Математическая логика и теорема Курта Гёделя. Вопрос о существовании бога и теорема Гёделя. Для математиков и логиков Теорема геделя о искусственном интеллекте

Признаюсь, что саму идею рассмотрения вопроса о существовании бога с этой стороны я вычитал у Анатолия Александровича Вассермана:
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D1%82%D0%BE%D0%BB%D0%B8%D0%B9_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87_%D0%92%D0%B0%D1%81%D1%81%D0%B5%D1%80%D0%BC%D0%B0%D0%BD#.D0.A0.D0.B5.D0.BB.D0.B8.D0.B3.D0.B8.D0.BE.D0.B7.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B7.D0.B3.D0.BB.D1.8F.D0.B4.D1.8B

Но мне бы хотелось развить эту идею и описать ее немного подробнее.
В религии (как и не в религии) присутствует некоторая аксиоматика построения. По крайней мере в идеальном случае, если это не просто слепое верование, а сознательный и обоснованный выбор. Например, аксиомой физики можно считать "природа познаваема с помощью разума и логических умозаключений, все законы физики одинаковы во всех точках пространства и в любое время". Например, аксиомой религии можно считать высказывание "бог существует и является первопричиной всего сущего". Иначе говоря, нет сомнения, что все многочисленые частности и ответвления можно свести к нескольким важнейшим никак не доказуемым утверждениям, которые и являются теми самыми аксиомами.

Рассмотрим с этих позиций религиозные верования. Важнейшая аксиома религии: "бог существует и является первопричиной всего сущего".
Теперь вспомним одну из важнейших математических теорем, теорему Гёделя.
http://elementy.ru/trefil/21142
Слабая теорема Гёделя: "Любая формальная система аксиом содержит неразрешенные предположения" или "если система аксиом полна, то она противоречива."
Сильная теорема Гёделя: "Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)."

Вспомним некоторые определения. Система аксиом полна, если любое утверждение сформулированное для данной системы аксиом доказуемо (то есть является либо истиным, либо ложным). Неразрешенное предположение - такое утверждение, относительно которого не может быть доказана ни его истиность, ни ложность, то есть утверждение логически не доказуемо. Система аксиом противоречива, если относительно одного и того же утверждения можно доказать как его истиность, так и его ложность.

Из теоремы Гёделя следует, что если понятие бога входит в аксиоматическую систему, то эта система не полна, то есть существуют следствия (явления), которые не доказуемы, то есть они могут существовать, а могут не существовать, это не доказуемо.
Но это противоречит следующим двум положениям (выбирайте любое наиболее убедительное): природа не содержит явлений, которые можно считать и существующими и не существующими, любое явление природы либо существует, либо не существует. Второе же положение говорит, что по определению бог является первопричиной всего, следовательно бог либо приводит к существованию некоторых вещей (утверждений), либо к их несуществованию, ссылаясь на бога можно либо доказать, либо опровергнуть любое утверждение. Это противоречит неполноте системы.

Или иначе. Если включить понятие бога в аксиоматическую систему и предположить ее полной (любое утверждение в полной сестеме аксиом доказуемо), то по теореме Гёделя такая система аксиом будет противоречивой, то есть будут существовать явления про которые можно доказать, что они и существуют, и не существуют.

Включать бога в противоречивую систему аксиом нет смысла, так как она противоречива, то есть в ней есть явления, про которые можно доказать, что они и существуют, и не существуют, что, как говорилось, противоречит природе и понятию бога.

Наконец, если понятие бога не входит в аксиоматическую систему, то оно не может считаться фундаментальной основой мироздания, из которой следует все существующее, что по сути противоречит определению бога.

Для справедливости данного доказательства необходимо признание справедливости законов математической логики (логика высказываний + исчисление предикатов), позволяющих устанавливать законы следствия, истиность, ложность, противоречивость, непротиворечивость утверждений и другие свойства и отношения между утверждениями.

Если же считать, что математическая логика не применима к исследованию вопроса существования бога, то следствием будет не возможность исследования этого вопроса с помощью рассуждений, с помощью разума. Иначе говоря, последовательный разум всегда приходит к отрицательному ответу на вопрос существования бога.

Что же получается в итоге... любой хоть сколько-нибудь рациональный человек, конечно, признает справедливость законов логики, а значит неизменно приходит к выводу, что бог в определении "причина всего сущего" не существует. Человек не рациональный, который утверждает, что бога можно познать только с помощью чувств (а не разума), конечно, может так утверждать, однако нету никакого способа убедить в этом другого, чувства не возможно передать. Более того понятие бога является понятием сформулированным разумом. Каким образом предлагается транслировать понятие разума в ощущение, да еще так, чтобы это можно было передать другому человеку - не ясно. Опять же хоть сколько-нибудь рациональный человек скажет, что это не возможно: абстрактное понятие разума перевести в чувство и ощутить его.

Наконец, есть еще один вариант: "бог - не первопричина всего". Тогда подобных противоречий не возникает, однако это является значительнейшим ослаблением позиций религии, так как именно то, что бог создал все, что бог - начало всех начал, является фундаментом для многочисленных утверждений религии и обоснований в спорах.

P.S. Стоит отметить еще одну любопытнейшую вещь, любопытную уже для физиков. В данном определении бога ничего не говорится о его разумности. То есть можно было бы добавить "бог - разумная причина всего сущего", однако это сужение определения, которое изначально и не требуется для доказательства. Без разумности понятие "бога" можно легко заменить на "сингулярность и большой взрыв - причина всего сущего". И ответ будет тот же самый: сингулярность и большой взрыв - не первопричина всего сущего.
Проведя еще большее абстрагирование можно сказать, что ни одно явление или причина не могут являться первопричиной всего сущего, то есть первопричины не существует в принципе. Рассуждая в рамках любой аксиоматики можно прийти к выводу, что первопричины всего не существует. Говоря совсем просто, до каких бы основ мы ни познали вселенную, всегда останутся вопросы в духе: "откуда появился большой взрыв, откуда появилась сингулярность, откуда появилась пульсирующая вселенная, откуда появилась мультивселенная, почему вселенная существует всегда?" и т.п. Первопричину всего не возможно найти в принципе, она не содержится ни в одном объекте, явлении или понятии. Следовательно для человека это эквивалентно ее отсутствию. Теоретически можно предположить существование стороннего наблюдателя за пределами нашей вселенной, который даст ответ на вопрос, откуда все взялось (та самая дополнительная аксиома, расширение в теореме Гёделя), однако тогда возникнет вопрос, откуда взялся сторонний наблюдатель, его вселенная и первопричина всего этого.

Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862-1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом — базовых утверждений, принимаемых в математике за основу без доказательств, — совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.

Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.

И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:

«Если можно доказать утверждение A, то можно доказать и утверждение не-A».

Иными словами, если можно доказать справедливость утверждения «предположение 247 не доказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо ». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.

Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть, приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, — и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.

Итак, формулировка первой ,или слабой теоремы Гёделя о неполноте : «Любая формальная система аксиом содержит неразрешенные предположения». Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте : «Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)».

Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность — исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный — никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения , и тест Тьюринга пройдет успешно.

Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?

Kurt Gödel, 1906-78

Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года — профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить.

Успенский В.А.

Теорема Геделя о неполноте.1994.

Theoretical Computer Science 130,1994, pp.273-238.

Пожалуй, теорема Геделя о неполноте является воистину уникальной. Уникальной в том, что на нее ссылаются, когда хотят доказать "все на свете" - от наличия богов до отсутствия разума. Меня всегда интересовал более "первичный вопрос" - а кто из ссылающихся на теорему о неполноте смог-бы не только сформулировать ее, но и доказать? Я публикую данную статью по той причине, что в ней изложена вполне доступная формулировка теоремы Геделя. Рекомендую предварительно ознакомиться со статьей Туллио Редже Курт Гедель и его знаменитая теорема

Вывод о невозможности универсального критерия истины является

непосредственным следствием результата, полученного Тарским путем соединения

теоремы Геделя о неразрешимости с его собственной теорией истины, согласно

которому универсального критерия истины не может быть даже для относительно

узкой области теории чисел, а значит, и для любой науки, использующей

арифметику. Естественно, что этот результат применим a fortiori к понятию истины

в любой нематематической области знания, в которой широко

используется арифметика.

Карл Поппер

Успенский Влaдимиp Aндpеевич pодился 27 ноябpя 1930 г. в г. Москве. Окончил мехaнико-мaтемaтический фaкультет МГУ (1952). Доктоp физико-мaтемaтических нaук (1964). Пpофессоp, заведующий кaфедpой мaтемaтической логики и теоpии aлгоpитмов мехaнико-мaтемaтического фaкультетa (1966). Читает курсы лекций "Введение в математическую логику", "Вычислимые функции", "Теорема Геделя о полноте". Подготовил 25 кандидатов и 2 докторов наук

1. Постановка задачи

Теорема о неполноте, точную формулировку которой мы дадим в конце этой главки, а быть может позже (в случае возникновения к этому интереса у читателя) и доказательство, утверждает примерно следующее: при определенных условиях в любом языке существуют истинные, но недоказуемые утверждения.

Когда мы таким образом формулируем теорему, почти каждое слово требует некоторых пояснений. Поэтому мы начнем с того, что объясним значение слов, используемых нами в этой формулировке.

Мы не будем давать наиболее общее из возможных определений языка, предпочтя ограничиться теми языковыми концепциями, которые нам понадобятся впоследствии. Есть два таких понятия: "алфавит языка" и "множество истинных утверждений языка".

1.1.1. Алфавит

Под алфавитом мы понимаем конечный набор элементарных знаков (то есть - вещей, которые невозможно разбить на составные части). Эти знаки называются буквами алфавита. Под словом алфавита мы понимаем конечную последовательность букв. Например, обыкновенные слова в английском языке (включая имена собственные) являются словами 54-хбуквенного алфавита (26 маленьких букв, 26 прописных, тире и апостроф). Другой пример - натуральные числа в десятичной записи являются словами 10-тибуквенного алфавита, чьи буквы - знаки: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения алфавитов мы будем использовать обыкновенные заглавные буквы. Если L - алфавит, то L? будет обозначать множество всех слов алфавита L, - слов, образованных из его букв. Мы предположим, что любой язык имеет свой алфавит, так что все выражения этого языка (т. е. - имена различных объектов, утверждения относительно этих объектов и т.д.) являются словами этого алфавита. Например, любое предложение английского языка, равно как и любой текст, написанный по-английски, может рассматриваться как слово расширенного алфавита из 54-х букв, включающего также знаки пунктуации, междусловный пробел, знак красной строки и, возможно, некоторые другие полезные знаки. Предполагая, что выражения языка являются словами некоторого алфавита, мы, таким образом, исключаем из рассмотрения "многослойные" выражения типа???f(x)dx. Однако, это ограничение не слишком существенно, так как любое подобное выражение, при использовании подходящих конвенций, может быть "растянуто" в линейную форму. Любое множество М, содержащееся в L? называется словным множеством алфавита L. Если мы просто говорим, что М - словное множество, то мы подразумеваем, что оно является словом некоторого алфавита. Теперь сформулированное выше предположение о языке может быть перефразировано следующим образом: в любом языке любое множество выражений является словным множеством.

1.1.2. Множество истинных утверждений

Мы предположим, что нам задано подмножество Т множества L? (где L алфавит некоторого рассматриваемого нами языка), которое называется множеством "истинных утверждений" (или просто "истин"). Переходя непосредственно к подмножеству Т, мы опускаем следующие промежуточные шаги рассуждения: во-первых, какие именно слова алфавита L являются корректно образованными выражениями языка, то есть - имеющими определенное значение в нашей интерпретации этого языка (например, 2+3, х+3, х=у, х=3, 2=3, 2=2 являются корректно образованными выражениями, в то время как выражения типа +=х таковыми не являются); во-вторых, какие именно выражения являются формулами, т.е. могут зависеть от параметра (например, х=3, х=у, 2=3, 2=2); в третьих, какие именно из формул являются закрытыми формулами, т.е. утверждениями, не зависящими параметров (например, 2=3, 2=2); и наконец, какие именно закрытые формулы являются истинными утверждениями (например, 2=2).

1.1.3. Фундаментальная пара языка

1.2. "Недоказуемые"

"Недоказуемые" значит не имеющие доказательства.

1.3. Доказательство

Несмотря на то что термин "доказательство" является, возможно, одним из важнейших в математике (Бурбаки начинают свою книгу "Основания математики" словами: "Со времени древних греков сказать "математика" значило то же, что сказать "доказательство""), он не имеет своей точной дефиниции. В целом, понятие доказательства со всеми его смысловыми ответвлениями относится, скорей, к области психологии, нежели к математике. Но как бы то ни было, доказательство - это просто аргумент, который мы сами находим вполне убедительным для того, чтобы убедить всех остальных.

Будучи записано, доказательство становится словом в некотором алфавите Р, так же как любой английский текст является словом алфавита L, пример которого был приведен выше. Множество всех доказательств образуют подмножество (и довольно-таки обширное подмножество) множества Р?. Мы не будем пытаться дать точное определение этой одновременно "наивной" и "абсолютной" концепции доказательства, или - что равносильно - дать определение соответствующему подмножеству Р?. Вместо этого мы рассмотрим формальный аналог этого смутного понятия, для обозначения которого в дальнейшем мы все же будем пользоваться термином "доказательство". Этот аналог имеет две весьма важные особенности, кои отличают его от интуитивного понятия (хотя интуитивная идея доказательства все же отражает в некоторой степени эти особенности). Прежде всего мы допустим, что существуют разные концепции доказательства, то есть - допустимы разные подмножества доказательств в Р?, и даже больше того: мы, на деле, будем допускать, что сам алфавит доказательств Р может изменяться. Далее мы потребуем, чтобы для каждой такой концепции доказательства существовал эффективный метод, другими словами, алгоритм, который бы с необходимостью определял, является ли данное слово алфавита Р доказательством или нет. Мы также предположим, что существует алгоритм, с помощью которого всегда можно определить, какое именно утверждение доказывает данное доказательство. (Во многих ситуациях доказываемым утверждением просто является последнее утверждение в последовательности шагов, образующих доказательство.)

Таким образом, наша окончательная формулировка определения выглядит следующим образом:

(1) У нас имеются алфавит L (алфавит языка) и алфавит Р (алфавит доказательства).

(2) Нам дано множество Р, являющееся подмножеством Р?, и чьи элементы называются "доказательствами". В дальнейшем мы будем предполагать, что также у нас имеется алгоритм, который позволяет нам определить является ли произвольное слово алфавита Р элементом множества Р, то есть доказательством, или нет.

(3) Также у нас есть функция? (для нахождения того, что именно было доказано), чья область определения? удовлетворяет условию Р???Р?, и чья область значений находится в Р?. Мы предполагаем, что у нас есть алгоритм, который вычисляет эту функцию (точное значение слов "алгоритм вычисляет функцию" следующее: значения функции получаются при помощи этого алгоритма - набора специальных правил преобразования). Мы будем говорить, что элемент р? Р есть доказательство слова?(р) алфавита L.

Тройка, удовлетворяющая условиям (1)-(3) называется дедуктивной системой над алфавитом L.

Для читателя, знакомого с обычным способом определения "доказательства" в терминах "аксиома" и "правило вывода", мы сейчас поясним, как этот метод может рассматриваться в качестве специального случая определения, данного в параграфе 1.3.2. То есть - доказательство обычно определяется как последовательность таких выражений языка, каждое из которых является либо аксиомой, либо ранее полученным из уже существующих утверждений при помощи одного из правил вывода. Если мы добавим новое слово * к алфавиту нашего языка, то мы сможем записать такое доказательство в виде слова составленного при помощи полученного в результате такой модификации алфавита: последовательность выражений становится словом C1*C2*...*Cn. В таком случае, функция, определяющая, что именно было доказано, своим значением имеет часть этого слова, стоящую сразу за последней в последовательности буквой *. Алгоритм, существование которого требуется в части 1.3.2. определения, может легко быть сконструирован, как только мы точно определим какое-либо из принятых значений слов "аксиома" и "правила вывода".

1.4.Попытки точной формулировки теоремы о неполноте

1.4.1. Первая попытка

"При определенных условиях для фундаментальной пары языка алфавита L и дедуктивной системы над L - всегда существует слово в Т, не имеющее доказательства". Этот вариант все еще выглядит смутным. В частности, мы могли бы запросто придумать сколько угодно дедуктивных систем, имеющих очень немного доказуемых слов. Например, в пустой дедуктивной системе (где Р = ?) совсем нет слов, у которых были бы доказательства.

1.4.2. Вторая попытка

Есть другой, более естественный подход. Предположим, нам задан язык - в том смысле, что нам задана фундаментальная пара этого языка. Теперь мы будем искать такую дедуктивную систему над L (интуитивно, мы ищем технику доказательства), при помощи которой мы могли бы доказать как можно больше слов из Т, в пределе все слова из Т. Теорема Геделя описывает ситуацию, в которой такая дедуктивная система (посредством коей, каждое слово в Т было бы доказуемо) не существует. Таким образом, нам бы хотелось сформулировать следующее утверждение:

"При определенных условиях относительно фундаментальной пары не существует такой дедуктивной системы, в которой бы каждое слово из Т имело бы доказательство".

Однако такое утверждение, очевидно, ложно, так как необходимо лишь взять такую дедуктивную систему, в которой Р = L, Р = Р? и?(р) = р для всех р из Р?; тогда каждое слово из L? является тривиально доказуемым. Следовательно, нам нужно принять некоторое ограничение на то, какими дедуктивными системами мы пользуемся.

1.5. Непротиворечивость

Было бы вполне естественно потребовать, что только "истинные утверждения", то есть только слова из Т, могут быть доказаны. Мы будем говорить, что дедуктивная система является непротиворечивой относительно фундаментальной пары, если?(Р)?Т. Во всех последующих рассуждениях нас будут интересовать только такие непротиворечивые дедуктивные системы. Если же нам задан язык, то было бы чрезвычайно соблазнительно найти такую непротиворечивую дедуктивную систему, в которой каждое истинное утверждение имело бы доказательство. Интересующий нас вариант теоремы Геделя в точности утверждает, что при определенных условиях относительно фундаментальной пары, невозможно найти такую дедуктивную систему.

1.6. Полнота

Говорится, что дедуктивная система полна относительно фундаментальной пары, при условии если?(Р)?Т. Тогда наша формулировка теоремы о неполноте приобретает следующий вид:

При определенных условиях относительно фундаментальной пары, не существует такой дедуктивной системы над L, которая была бы одновременно полна и непротиворечива относительно.

Идея доказательства заключается в том, чтобы построить такое выражение, которое свидетельствовало бы о своей

собственной недоказуемости. Такое построение может быть выполнено в три этапа:

Первый этап - установление соответствия между формальной арифметикой и множеством целых чисел (гедели-зации);

Второй этап - построение некоторого специального свойства о котором неизвестно, является ли оно теоремой формальной арифметики или нет;

Третий этап - подстановка в вместо х определенного целого числа, связанного с самим т. е. замещение этими числами всех

Первый этап. Геделизация формальной арифметики

Формальная арифметика может быть арифметизирована (т. е. геделизирована) следующим образом: каждой ее теореме ставится в соответствие некоторое число. Однако так как всякое число также является теоремой, то всякая теорема может рассматриваться, с одной стороны, в качестве теоремы формальной арифметики, а с другой - как теорема над множеством теорем формальной арифметики, т. е. в качестве метатеоремы, соответствующей доказательству некой теоремы.

Таким образом, можно сделать вывод, что система формальной арифметики содержит также и свою собственную метасистему.

Теперь более конкретно и подробно изложим полученные результаты.

Во-первых, мы можем связать с каждым символом и формальной арифметики специальное кодовое обозначение, называемое в данном случае геделевым номером

Во-вторых, каждой последовательности символов мы ставим в соответствие тот же геделев номер с помощью некоторой функции композиции Пусть где представляют собой последовательности символов, которые образуют

В-третьих (и это существенно), каждому доказательству последовательности аксиом и правил подстановки (или правил замещения) ставится в соответствие число где обозначает последовательность теорем, используемых при доказательстве

Таким образом, всякому доказательству в формальной арифметике соответствует некоторое число - его геделев номер Всякое рассуждение формальной ариметики преобразуется в вычисления на множестве натуральных чисел.

Итак, вместо того чтобы производить манипуляции с символами, теоремами, доказательствами, можно воспользоваться

вычислениями на множестве целых чисел. Всякое выражение, подобное, например, следующему: доказуемо в формальной арифметике", теперь соответствует определенному числу, которое будем обозначать как

Сформулируем следующее положение.

Формальная метаарифметика содержится в множестве натуральных чисел, а оно само содержится в интерпретации формальной арифметики.

Эта ситуация с формальной арифметикой напоминает ситуацию с естественным языком: ведь нам ничто не мешает использовать его и для того, чтобы формулировать на нем основные его понятия и правила.

Надлежащий выбор функции позволяет осуществить однозначный переход от А к т. е. присвоить два разных числа-номера двум различным доказательствам. Например, можно так выбрать геделевы номера, чтобы каждому символу алфавита формальной арифметики соответствовало свое простое число, как показано, например, в табл. 3.2.

Таблица 3.2

Каждая формула (состоящая из символов изменяющимся от 1 до в свою очередь кодируется последовательностью, состоящей из первых простых чисел, т. е. числом

где простое число.

В свою очередь доказательство, т. е. последовательность из формул будет закодирована аналогичным образом числом

И наоборот, благодаря такому способу построения номеров становится возможным, исходя из некоторого числа, с помощью разложения его на простые множители (в силу единственности разложения натуральных чисел в произведения степеней простых чисел) возвратиться за два шага к показателям степени т. е. к примитивным символам формальной арифметики. Конечно, это имеет в основном лишь теоретическое значение, так как номера быстро становятся слишком большими

для того, чтобы ими можно было манипулировать. Однако следует отметить, что существенным является принципиальная возможность этой операции.

Пример. Пусть задано число Т, соответствующее некоторому доказательству и представляющее собой произведение простых чисел:

Это разложение означает, что доказательство теоремы содержит два этапа: один соответствует числу 1981027125 253, а другой - числу 1981027125 211. Разлагая снова на простые множители каждое из этих чисел, получим

Из таблицы кодирования алфавита формальной арифметики (табл. 3.2) находим, что нашим геделевым номерам для Этих двух чисел

будет соответствовать следующее доказательство:

Из формулы следует формула

Таким образом, в метаарифметике получено значение исходного числа из формальной арифметики.

Второй этап. Лемма Геделя

Всякому числу Т, связанному с доказательством, соответствует теорема доказуемая в формальной арифметике. “Геделизированную” формальную арифметику называют арифметизированной формальной арифметикой. Поскольку каждая аксиома и каждое правило арифметизированной формальной арифметики соответствуют какой-нибудь арифметической операции, то с помощью систенатизированной проверки можно определить, соответствует ли данное число Т доказательству какой-то теоремы Числа Т и образуют в этом случае пару сопряженных чисел. Выражение и являются сопряженными” Представимо внутри самой арифметизированной формальной арифметики. Это означает, что существует геделев номер который выражает в цифровой форме это утверждение.

Мы подошли к критическому пункту доказательства Геделя. Пусть А является выражением арифметизированной формальной арифметики, которое содержит какую-то свободную переменную. Вместо нее можно сделать подстановку какого-нибудь терма. В частности, можно заменить выражение А самим выражением А. В этом случае номер-выражение А выполняет одновременно две различные роли (см. выше построения

Кантора и Ришара): оно одновременно является истинным выражением для подстановки и результирующим термом. Эту специальную подстановку будем обозначать как Так формула означает, что число есть геделев номер, получаемый при выполнении подстановки - к выражению А:

Затем Гедель строит выражение (о котором неизвестно, представляет ли оно собой теорему или не-теорему), в которое вводит эту подстановку. Выражение имеет следующий вид:

Третий этап. Завершающая подстановка

В арифметизированной формальной арифметике это выражение представлено в цифровой форме. Пусть Е - его геделев номер. Так как выражение содержит свободную переменную то мы имеем право выполнить подстановку - над замещая числом Е и обозначая -замещение Е:

Это второе выражение обозначим через а его геделев номер через Е. Дадим интерпретации выражения е.

Первая интерпретация. Не существует такой пары для которой одновременно выполнялось бы следующее: с одной стороны, Т - номер арифметизированного доказательства теоремы арифметизированной ею самой, а с другой - было бы есть замещение Но так как есть такое же преобразование, как и другие, то оно представимо в термах и в их кодовых обозначениях - геделевых номерах и, следовательно, такой номер существует. Тогда, возможно, номер Т не существует.

Вторая интерпретация. Не существует арифметизированного доказательства Т теоремы которое было бы -замещением Е. Итак, если не существует доказательства, то потому, что само по себе не является теоремой. Отсюда вытекает третья интерпретация.

Третья интерпретация. Выражение, для которого геделев номер есть -замещение Е, не является теоремой арифметизированной формальной арифметики. Но в этом и заключается противоречие, так как по построению именно само является -замещением Е и номер есть не что иное по построению, как сам номер Е. Отсюда вытекает последняя интерпретация е.


доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно. Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание. Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности. Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных. В таких случаях говорят, что дедуктика противоречива . Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика» - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи). Любому школьнику известно, что, скажем, в случае функции вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов. А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально. ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают.

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов («существует») и («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны). Понятно, что не все такие строки осмысленны (например, « » - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:


и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром ):


и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:


Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:


Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck , состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке - скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА. Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию - ЛОЖЬ. Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида (см. портрет в заголовке), который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство , которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

  • «Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

  • «Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда?