Десятичный логарифм и его свойства. Десятичный логарифм: как вычислить? Логарифм 0.01 по основанию 10

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Степень отдельно взятого числа называется математическим термином, придуманным несколько столетий назад. В геометрии и алгебре встречается два варианта - десятичные и натуральные логарифмы. Они рассчитываются разными формулами, при этом уравнения, отличающиеся написанием, всегда равны друг другу. Это тождество характеризует свойства, которые относятся к полезному потенциалу функции.

Особенности и важные признаки

На данный момент различают десять известных математических качеств. Самыми распространенными и востребованными из них являются:

  • Подкоренной log, разделенный на величину корня, всегда такой же, как и десятичный логарифм √.
  • Произведение log всегда равно сумме производителя.
  • Lg = величине степени, перемноженной на число, которое в нее возводится.
  • Если от log делимого отнять делитель, получится lg частного.

Кроме того, есть уравнение, основанное на главном тождестве (считается ключевым), переход к обновленному основанию и несколько второстепенных формул.

Вычисление десятичного логарифма - довольно специфическая задача, поэтому к интегрированию свойств в решение необходимо подходить осторожно и регулярно проверять свои действия и последовательность. Нельзя забывать и о таблицах, с которыми нужно постоянно сверяться, и руководствоваться только найденными там данными.

Разновидности математического термина

Главные отличия математического числа «спрятаны» в основании (a). Если оно имеет показатель 10, то это десятичный log. В обратном случае «a» преобразуется в «у» и обладает трансцендентными и иррациональными признаками. Также стоит отметить, что натуральная величина рассчитывается специальным уравнением, где доказательством становится теория, изучаемая за пределами школьной программы старших классов.

Логарифмы десятичного типа получили широкое применение при вычислении сложных формул. Составлены целые таблицы, облегчающие расчеты и наглядно показывающие процесс решения задачи. При этом перед непосредственным переходом к делу нужно возвести log в К тому же в каждом магазине школьных принадлежностей можно найти специальную линейку с нанесенной шкалой, помогающей решить уравнение любой сложности.

Десятичный логарифм числа называется Бригговым, или цифрой Эйлера, в честь исследователя, который первым опубликовал величину и обнаружил противопоставление двух определений.

Два вида формулы

Все типы и разновидности задач на вычисление ответа, имеющие в условии термин log, обладают отдельным названием и строгим математическим устройством. Показательное уравнение является практически точной копией логарифмических расчетов, если смотреть со стороны правильности решения. Просто первый вариант включает в себя специализированное число, помогающее быстрее разобраться в условии, а второй заменяет log на обыкновенную степень. При этом вычисления с применением последней формулы должны включать в себя переменное значение.

Разница и терминология

Оба главных показателя обладают собственными особенностями, отличающими числа друг от друга:

  • Десятичный логарифм. Важная деталь числа - обязательное наличие основания. Стандартный вариант величины равен 10. Маркируется последовательностью - log x или lg x.
  • Натуральный. Если его основанием является знак «e», представляющий собой константу, идентичную строго рассчитанному уравнению, где n стремительно движется к бесконечности, то приблизительный размер числа в цифровом эквиваленте составляет 2.72. Официальная маркировка, принятая как в школьных, так и в более сложных профессиональных формулах, - ln x.
  • Разные. Кроме основных логарифмов встречаются шестнадцатиричные и двоичные виды (основание 16 и 2 соответственно). Есть еще сложнейший вариант с базовым показателем 64, подпадающий под систематизированное управление адаптивного типа, с геометрической точностью производящее расчет итогового результата.

Терминология включает в себя следующие величины, входящие в алгебраическую задачу:

  • значение;
  • аргумент;
  • основание.

Вычисление log числа

Есть три способа быстро и в устной форме сделать все необходимые расчеты по нахождению интересующего результата с обязательным правильным итогом решения. Изначально приближаем десятичный логарифм к своему порядку (научная запись числа в степени). Каждую положительную величину можно задать уравнением, где она будет равен мантиссе (цифра от 1 до 9), перемноженной на десятку в n-й степени. Такой вариант подсчета создан на основе двух математических фактов:

  • произведение и сумма log всегда имеют одинаковый показатель;
  • логарифм, взятый из числа от одного до десяти, не может превышать величину в 1 пункт.
  1. Если ошибка в вычислении все-таки происходит, то она никогда не бывает меньше одного в сторону вычитания.
  2. Точность повышается, если учесть, что lg с основанием три имеет итоговый результат - пять десятых от единицы. Поэтому любое математическое значение больше 3 автоматически добавляет к ответу один пункт.
  3. Практически идеальная точность достигается, если под рукой есть специализированная таблица, которую можно легко применять в своих оценочных действиях. С ее помощью можно выяснить, чему равен десятичный логарифм до десятых процентов от оригинального числа.

История вещественного log

Шестнадцатый век остро испытывал потребности в более сложных исчислениях, чем было известно науке того времени. Особенно это касалось деления и умножения многозначных цифр с большой последовательностью, в том числе дробей.

В конце второй половины эпохи сразу несколько умов пришли к выводу о сложении чисел с помощью таблицы, которая сопоставляла две и геометрическую. При этом все базовые расчеты должны были упираться в последнюю величину. Таким же образом ученые интегрировали и вычитание.

Первое упоминание об lg состоялось в 1614 году. Это сделал любитель-математик по фамилии Непер. Стоит отметить, что, несмотря на огромную популяризацию полученных результатов, в формуле была сделана ошибка из-за незнаний некоторых определений, появившихся позже. Она начиналась с шестого знака показателя. Наиболее близки к пониманию логарифма были братья Бернулли, а дебютное узаконивание произошло в восемнадцатом столетии Эйлером. Он же и распространил функцию в область образования.

История комплексного log

Дебютные попытки интегрировать lg в широкие массы делали на заре 18-го века Бернулли и Лейбниц. Но целостных теоретических выкладок они так и не сумели составить. По этому поводу велась целая дискуссия, но точного определения числу не присваивали. Позже диалог возобновился, но уже между Эйлером и Даламбером.

Последний был в принципе согласен со множеством фактов, предлагаемых основателем величины, но считал, что положительный и отрицательный показатели должны быть равны. В середине столетия формула была продемонстрирована в качестве окончательного варианта. Кроме того, Эйлером была опубликована производная десятичного логарифма и составлены первые графики.

Таблицы

Свойства числа указывают на то, что многозначные цифры можно не перемножать, а найти их log и сложить посредством специализированных таблиц.

Особенно ценным этот показатель стал для астрономов, которые вынуждены работать с большим набором последовательностей. В советское время десятичный логарифм искали в сборнике Брадиса, выпущенного в 1921 году. Позже, в 1971 году, появилось издание Веги.

Область допустимых значений (ОДЗ) логарифма

Теперь поговорим об ограничениях (ОДЗ - область допустимых значений переменных).

Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:

То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться.

Почему так?

Начнем с простого: допустим, что. Тогда, например, число не существует, так как в какую бы степень мы не возводили, всегда получается. Более того, не существует ни для какого. Но при этом может равняться чему угодно (по той же причине - в любой степени равно). Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.

Похожая проблема у нас и в случае: в любой положительной степени - это, а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что).

При мы столкнемся с проблемой возведения в дробную степень (которая представляется в виде корня: . Например, (то есть), а вот не существует.

Поэтому и отрицательные основания проще выбросить, чем возиться с ними.

Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).

В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:

Решим уравнение.

Вспомним определение: логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент. И по условию, эта степень равна: .

Получаем обычное квадратное уравнение: . Решим его с помощью теоремы Виета: сумма корней равна, а произведение. Легко подобрать, это числа и.

Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?

Это явно неверно, так как основание не может быть отрицательным, то есть корень - «сторонний».

Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:

Тогда, получив корни и, сразу отбросим корень, и напишем правильный ответ.

Пример 1 (попробуй решить самостоятельно):

Найдите корень уравнения. Если корней несколько, в ответе укажите меньший из них.

Решение:

В первую очередь напишем ОДЗ:

Теперь вспоминаем, что такое логарифм: в какую степень нужно возвести основание, чтобы получить аргумент? Во вторую. То есть:

Казалось бы, меньший корень равен. Но это не так: согласно ОДЗ корень - сторонний, то есть это вообще не корень данного уравнения. Таким образом, уравнение имеет только один корень: .

Ответ: .

Основное логарифмическое тождество

Вспомним определение логарифма в общем виде:

Подставим во второе равенство вместо логарифм:

Это равенство называется основным логарифмическим тождеством . Хотя по сути это равенство - просто по-другому записанное определение логарифма :

Это степень, в которую нужно возвести, чтобы получить.

Например:

Реши еще следующие примеры:

Пример 2.

Найдите значение выражения.

Решение:

Вспомним правило из раздела : , то есть, при возведении степени в степень показатели перемножаются. Применим его:

Пример 3.

Докажите, что.

Решение:

Свойства логарифмов

К сожалению, задачи не всегда такие простые - зачастую сперва нужно упростить выражение, привести его к привычному виду, и только потом будет возможно посчитать значение. Это проще всего сделать, зная свойства логарифмов . Так что давай выучим основные свойства логарифмов. Каждое из них я буду доказывать, ведь любое правило проще запомнить, если знать, откуда оно берется.

Все эти свойства нужно обязательно запомнить, без них большинство задач с логарифмами решить не получится.

А теперь обо всех свойствах логарифмов подробнее.

Свойство 1:

Доказательство:

Пусть, тогда.

Имеем: , ч.т.д.

Свойство 2: Сумма логарифмов

Сумма логарифмов с одинаковыми основаниями равна логарифму произведения: .

Доказательство:

Пусть, тогда. Пусть, тогда.

Пример: Найдите значение выражения: .

Решение: .

Только что выученная формула помогает упростить сумму логарифмов, а не разность, так что сразу эти логарифмы не объединить. Но можно сделать наоборот - «разбить» первый логарифм на два:А вот обещанное упрощение:
.
Зачем это нужно? Ну например: чему равно?

Теперь очевидно, что.

Теперь упрости сам:

Задачи:

Ответы:

Свойство 3: Разность логарифмов:

Доказательство:

Все точно так же, как и в пункте 2:

Пусть, тогда.

Пусть, тогда. Имеем:

Пример из прошлого пункта теперь становится еще проще:

Пример посложнее: . Догадаешься сам, как решить?

Здесь нужно заметить, что у нас нету ни одной формулы про логарифмы в квадрате. Это что-то сродни выражению - такое сразу не упростить.

Поэтому отвлечемся от формул про логарифмы, и подумаем, какие вообще формулы мы используем в математике чаще всего? Еще начиная с 7 класса!

Это - . Нужно привыкнуть к тому, что они везде! И в показательных, и в тригонометрических, и в иррациональных задачах они встречаются. Поэтому их нужно обязательно помнить.

Если присмотреться к первым двум слагаемым, становится ясно, что это разность квадратов :

Ответ для проверки:

Упрости сам.

Примеры

Ответы.

Свойство 4: Вынесение показателя степени из аргумента логарифма:

Доказательство: И здесь тоже используем определение логарифма:пусть, тогда. Имеем: , ч.т.д.

Можно понять это правило так:

То есть степень аргумента выносится вперед логарифма, как коэффициент.

Пример: Найдите значение выражения.

Решение: .

Реши сам:

Примеры:

Ответы:

Свойство 5: Вынесение показателя степени из основания логарифма:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.
Запоминаем: из основания степень выносится как обратное число, в отличии от предыдущего случая!

Свойство 6: Вынесение показателя степени из основания и аргумента логарифма:

Или если степени одинаковые: .

Свойство 7: Переход к новому основанию:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.

Свойство 8: Замена местами основания и аргумента логарифма:

Доказательство: Это частный случай формулы 7: если подставить, получим: , ч.т.д.

Рассмотрим еще несколько примеров.

Пример 4.

Найдите значение выражения.

Используем свойство логарифмов № 2 - сумма логарифмов с одинаковым основанием равна логарифму произведения:

Пример 5.

Найдите значение выражения.

Решение:

Используем свойство логарифмов № 3 и № 4:

Пример 6.

Найдите значение выражения.

Решение:

Используем свойство № 7 - перейдем к основанию 2:

Пример 7.

Найдите значение выражения.

Решение:

Как тебе статья?

Если ты читаешь эти строки, значит ты прочитал всю статью.

И это круто!

А теперь расскажи нам как тебе статья?

Научился ты решать логарифмы? Если нет, то в чем проблема?

Пиши нам в комментах ниже.

И, да, удачи на экзаменах.

На ЕГЭ и ОГЭ и вообще в жизни

ОПРЕДЕЛЕНИЕ

Десятичным логарифмом называется логарифм по основанию 10:

Title="Rendered by QuickLaTeX.com">

Этот логарифм является решением показательного уравнения . Иногда (особенно в зарубежной литературе) десятичный логарифм обозначается еще как , хотя первые два обозначения присущи и натуральному логарифму.

Первые таблицы десятичных логарифмов были опубликованы английским математиком Генри Бригсом (1561-1630) в 1617 г. (поэтому иностранные ученые часто называют десятичные логарифмы еще бригсовыми), но эти таблицы содержали ошибки. На основе таблиц (1783 г.) словенского и австрийского математики Георга Барталомея Веги (Юрий Веха или Веховец, 1754-1802) в 1857 г. немецкий астроном и геодезист Карл Бремикер (1804-1877) опубликовал первое безошибочное издание. При участии русского математика и педагога Леонтия Филипповича Магницкого (Телятин или Теляшин, 1669-1739) в 1703 г. в России были изданы первые таблицы логарифмов. Десятичные логарифмы широко применялись для вычислений.

Свойства десятичных логарифмов

Этот логарифм обладает всеми свойствами, присущими логарифму по произвольному основанию:

1. Основное логарифмическое тождество:

5. .

7. Переход к новому основанию:

Функция десятичного логарифма — это функция . График этой кривой часто называют логарифмикой .

Свойства функции y=lg x

1) Область определения: .

2) Множество значений: .

3) Функция общего вида.

4) Функция непериодическая.

5) График функции пересекается с осью абсцисс в точке .

6) Промежутки знакопостоянства: title="Rendered by QuickLaTeX.com" height="16" width="44" style="vertical-align: -4px;"> для та для .

Нередко берут цифру десять. Логарифмы чисел по основанию десять именуют десятичными . При проведении вычислений с десятичным логарифмом общепринято оперировать знаком lg , а не log ; при этом число десять, определяющие основание, не указывают. Так, заменяем log 10 105 на упрощенное lg105 ; а log 10 2 на lg2 .

Для десятичных логарифмов типичны те же особенности, которые есть у логарифмов при основании, большем единицы. А именно, десятичные логарифмы характеризуются исключительно для положительных чисел. Десятичные логарифмы чисел, больших единицы, положительны, а чисел, меньших единицы, отрицательны; из двух не отрицательных чисел большему эквивалентен и больший десятичный логарифм и т. д. Дополнительно, десятичные логарифмы имеют отличительные черты и своеобразные признаки, которыми и поясняется, зачем в качестве основания логарифмов комфортно предпочитать именно цифру десять.

Перед тем как разобрать эти свойства, ознакомимся с нижеследующими формулировками.

Целая часть десятичного логарифма числа а именуется характеристикой , а дробная — мантиссой этого логарифма.

Характеристика десятичного логарифма числа а указывается как , а мантисса как {lg а }.

Возьмем, скажем, lg 2 ≈ 0,3010.Соответственно = 0, {lg 2} ≈ 0,3010.

Подобно и для lg 543,1 ≈2,7349. Соответственно, = 2, {lg 543,1}≈ 0,7349.

Достаточно повсеместно употребляется вычисление десятичных логарифмов положительных чисел по таблицам.

Характерные признаки десятичных логарифмов.

Первый признак десятичного логарифма. целого не отрицательного числа, представленного единицей со следующими нулями, есть целое положительное число, равное численности нулей в записи выбранного числа.

Возьмем, lg 100 = 2, lg 1 00000 = 5.

Обобщенно, если

То а = 10 n , из чего получаем

lg a = lg 10 n = n lg 10 = п .

Второй признак. Десятичный логарифм положительной десятичной дроби , показанный единицей с предыдущими нулями, равен - п , где п - численность нулей в представлении этого числа, учитывая и нуль целых.

Рассмотрим, lg 0,001 = - 3, lg 0,000001 =-6.

Обобщенно, если

,

То a = 10 -n и получается

lga= lg 10 n =-n lg 10 =-п

Третий признак. Характеристика десятичного логарифма не отрицательного числа, большего единицы, равна численности цифр в целой части этого числа исключая одну.

Разберем данный признак 1) Характеристика логарифма lg 75,631 приравнена к 1.

И правда, 10 < 75,631 < 100. Из этого можно сделать вывод

lg 10 < lg 75,631 < lg 100,

1 < lg 75,631 < 2.

Отсюда следует,

lg 75,631 = 1 +б,

Смещение запятой в десятичной дроби вправо или влево равнозначно операции перемножения этой дроби на степень числа десять с целым показателем п (положительным или отрицательным). И следовательно, при смещении запятой в положительной десятичной дроби влево или вправо мантисса десятичного логарифма этой дроби не меняется.

Так, {lg 0,0053} = {lg 0,53} = {lg 0,0000053}.