Аминокислоты проявляют свойства. Аминокислоты. Свойства аминокислот. Аминокислоты в организме человека

БИОСИНТЕЗ БЕЛКА НА РИБОСОМЕ

Аминокислоты - (аминокарбоновые кислоты; амк) — органические соединения , в молекуле которых одновременно содержатся карбоксильные и аминные группы (аминогруппы). Т.е. а минокислоты могут рассматриваться , как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

  • Карбоксильная группа (карбоксил) -СООН — функциональная одновалентная группа, входящая в состав карбоновых кислот и определяющая их кислотные свойства.
  • Аминогруппа — функциональная химическая одновалентная группа -NH 2 , органический радикал, содержащий один атом азота и два атома водорода.

Известно более 200 природных аминокислот , которые можно классифицировать по-разному. Структурная классификация исходит из положения функциональных групп на альфа-, бета-, гамма- или дельта- положении аминокислоты.

Кроме этой классификации, существуют еще и другие, например, классификация по полярности, рН уровню, а также типу группы боковой цепи (алифатические, ациклические, ароматические аминокислоты, аминокислоты, содержащие гидроксил или серу, и т.д.).

В виде белков аминокислоты являются вторым (после воды) компонентом мышц, клеток и других тканей человеческого организма. Аминокислоты играют решающую роль в таких процессах, как транспорт нейротрансмиттеров и биосинтезе.

Общая структура аминокислот. Альфа аминокислоты. Изомеризация аминокислот.

Аминокислоты - биологически важные органические соединения, состоящие из аминогруппы (-NH 2) и карбоновой кислоты (-СООН), и имеющие боковую цепь, специфичную для каждой аминокислоты. Ключевые элементы аминокислот - углерод, водород, кислород и азот. Прочие элементы находятся в боковой цепи определенных аминокислот.

Рис. 1 - Общая структура α-аминокислот , составляющих белки (кроме пролина). Составные части молекулы аминокислоты — аминогруппа NH 2 , карбоксильная группа COOH, радикал (различается у всех α-аминокислот), α-атом углерода (в центре).

В структуре аминокислот боковая цепь, специфичная для каждой аминокислоты, обозначается буквой R. Атом углерода, находящийся рядом с карбоксильной группой, называется альфа-углерод, и аминокислоты, боковая цепь которых связана с этим атомом, называются альфа-аминокислотами. Они представляют собой наиболее распространенную в природе форму аминокислот.

У альфа-аминокислот, за исключением глицина , альфа-углерод является хиральным атомом углерода. У аминокислот, углеродные цепи которых присоединяются к альфа-углероду (как, например, Лизин (L-лизин)), углероды обозначаются как альфа, бета, гамма, дельта, и так далее. У некоторых аминокислот аминогруппа прикреплена к бета или гамма-углероду, и поэтому они называются бета- или гамма- аминокислоты.

По свойствам боковых цепей аминокислоты подразделяются на четыре группы. Боковая цепь может делать аминокислоту слабой кислотой, слабым основанием, или эмульсоидом (если боковая цепь является полярной), или гидрофобным, плохо впитывающим воду, веществом (если боковая цепь неполярна).

Термин «аминокислота с разветвленной цепью» относится к аминокислотам, имеющим алифатические нелинейные боковые цепи, это Лейцин , Изолейцин и Валин .

Пролин - единственная протеиногенная аминокислота, боковая группа которой прикреплена к альфа-аминогруппе и, таким образом, также является единственной протеиногенной аминокислотой, содержащей на этом положении вторичный амин. С химической точки зрения, пролин, таким образом, является иминокислотой , поскольку в нем отсутствует первичная аминогруппа, хотя в текущей биохимической номенклатуре он все еще классифицируется как аминокислота, а также «N-алкилированная альфа-аминокислота» (Иминокислоты — карбоновые кислоты, содержащие иминогруппу (NH). Входят в состав белков, их обмен тесно связан с обменом аминокислот. По своим свойствам иминокислоты близки к аминокислотам, и в результате каталитического гидрирования иминокислоты превращаются в аминокислоты. Иминогруппа — молекулярная группа NH. Двухвалентна. Содержится во вторичных аминах и пептидах. В свободном виде двухвалентный радикал аммиака не существует).

АЛЬФА-АМИНОКИСЛОТЫ

Аминокислоты , имеющие как амин-, так и карбоксильную группу, прикрепляются к первому (альфа-) атому углерода имеют особое значение в биохимии. Они известны как 2-, альфа или альфа-аминокислоты (общая формула в большинстве случаев H 2 NCHRCOOH, где R представляет собой органический заместитель, известный как «боковая цепь»); часто термин «аминокислота» относится именно к ним.

Это 22 протеиногенных (то есть «служащих для строительства белка») аминокислоты, которые сочетаются в пептидные цепи («полипептиды»), обеспечивая построение широкого спектра белков. Они являются L-стереоизомерами («левыми» изомерами), хотя у некоторых бактерий и в некоторых антибиотиках встречаются некоторые из D-аминокислот («правых» изомеров).

Рис. 2. Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH 2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ АМИНОКИСЛОТ


Рис. 3. Оптические изомеры аминокислоты аланина

В зависимости от положения аминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты. Для организма млекопитающих наиболее характерны α-аминокислоты. Все входящие в состав живых организмов α-аминокислоты, кроме глицина , содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах .

Все стандартные альфа-аминокислоты, кроме глицина, могут существовать в форме одной из двух энантиомеров , называемых L или D аминокислоты, представляющих собой зеркальные отображения друг друга.

D, L -Система обозначения стереоизомеров.

По этой системе L -конфигурация приписывается стереозомеру, у которого в проекций Фишера реперная группа находится слева от вертикальной линии (от лат. "laevus" -левый). Надо помнить, что в проекции Фишера вверху располагают наиболее окисленный атом углерода (как правило, этот атом входит в состав карбоксильной СОOН или карбонильной СН=О групп.). Кроме того, в проекции Фишера все горизонтальные связи направлены в сторону наблюдателя, а вертикальные — удалены от наблюдателя. Соответственно, если реперная группа расположена в проекции Фишера справа, стереоизомер имеет D - конфигурацию (от лат. "dexter" - правый). В α-аминокислотах реперными группами служат группы NH 2.

Энантиомеры — пара стереоизомеров , представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве. Классической иллюстрацией двух энантиомеров могут служить правая и левая ладони: они имеют одинаковое строение, но различную пространственную ориентацию. Существование энантиомерных форм связано с наличием у молекулы хиральности — свойства не совмещаться в пространстве со своим зеркальным отражением. .

Энантиомеры идентичны по физическим свойствам. Они могут быть различены лишь при взаимодействии с хиральной средой, например, световым излучением. Энантиомеры одинаково ведут себя в химических реакциях с ахиральными реагентами в ахиральной среде. Однако, если реагент, катализатор либо растворитель хиральны, реакционная способность энантиомеров, как правило, различается. Большинство хиральных природных соединений (аминокислоты , моносахариды ) существует в виде 1 энантиомера. Понятие энантиомерии важно в фармацевтике , т.к. различные энантиомеры лекарств , имеют различную биологическую активность.

БИОСИНТЕЗ БЕЛКА НА РИБОСОМЕ

СТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(протеиногенные)

См. к теме: и Строение протеиногенных аминокислот

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот , кодируемых генетическим кодом (см. рис. 4). Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций.

Прим.: В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин и пирролизин. Это так называемые 21-я и 22-я аминокислоты.

Аминокислоты являются структурными соединениями (мономерами), из которых состоят белки. Они объединяются между собой, формируя короткие полимерные цепи, называемые пептидами длинной цепи, полипептидами или белками. Эти полимеры являются линейными и неразветвленными, каждая аминокислота в цепи присоединяется к двум соседним аминокислотам.

Рис. 5. Рибосома в процессе трансляции (синтеза белка)

Процесс построения белка называется трансляцией и включает в себя пошаговое добавление аминокислот к растущей цепи белка через рибозимы, осуществляемый рибосомой. Порядок, в котором добавляются аминокислоты, считывается в генетическом коде с помощью шаблона мРНК , который представляет собой копию РНК одного из генов организма.

Трансляция - биосинтез белка на рибосоме

Рис. 6 Стадии элонгации полипептида.

Двадцать две аминокислоты естественно включены в полипептиды и называются протеиногенными, или природными, аминокислотами. Из них 20 кодируются с помощью универсального генетического кода.

Оставшиеся 2, селеноцистеин и пирролизин , включаются в белки при помощи уникального синтетического механизма. Селеноцистеин образуется, когда транслируемый мРНК включает SECIS элемент, вызывающий кодон UGA вместо стоп-кодона. Пирролизин используется некоторыми метаногенными археями в составе ферментов, необходимых для производства метана. Он кодируется с кодоном UAG, который в других организмах обычно играет роль стоп-кодона. За кодоном UAG следует PYLIS последовательность.


Рис. 7. Полипептидная цепь - первичная структура белка.

Белки имеют 4 уровня своей структурной организации: первичная, вторичная, третичная и четвертичная. Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков.Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.


Рис. 8. Структурная организация белков

НЕСТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(Не-протеиногенные)

Помимо стандартных аминокислот существует множество других аминокислот, которые называются не-протеиногенными или нестандартными. Такие аминокислоты либо не встречаются в белках (например, L-карнитин , ГАМК ), либо не производятся непосредственно в изоляции при помощи стандартных клеточных механизмов (например, оксипролин и селенометионин).

Нестандартные аминокислоты, находящиеся в белках, образуются путем пост-трансляционной модификации, то есть модификацией после трансляции в процессе синтеза белка. Эти модификации часто необходимы для функционирования или регуляции белка; например, карбоксилирование глутамата позволяет улучшить связывание ионов кальция, а гидроксилирование пролина важно для поддержания соединительной ткани. Другой пример - формирование гипузина в фактор инициации трансляции EIF5A посредством модификации остатка лизина . Такие модификации могут также определять локализацию белка, например, добавление длинных гидрофобных групп может вызвать связывание белка с фосфолипидной мембраной.

Некоторые нестандартные аминокислоты не встречаются в белках. Это лантионин, 2-аминоизомасляная кислота, дегидроаланин и гамма-аминомасляная кислота. Нестандартные аминокислоты часто встречаются в качестве промежуточных метаболических путей для стандартных аминокислот - например, орнитин и цитруллин встречаются в орнитиновом цикле как часть катаболизма кислоты.

Редкое исключение доминированию альфа-аминокислоты в биологии - бета-аминокислота Бета-аланин (3-аминопропановая кислота), которая используется для синтеза пантотеновой кислоты (витамина B5), компонента коэнзима А у растений и микроорганизмов. Ее, в частности, продуцируют пропионовокислые бактериии .

Функции аминокислот

БЕЛКОВЫЕ И НЕ БЕЛКОВЫЕ ФУНКЦИИ

Многие протеиногенные и непротеиногенные аминокислоты также играют важную, не связанную с образованием белка, роль в организме. Например, в головном мозге человека глутамат (стандартная глутаминовая кислота) и гамма-аминомасляная кислота (ГАМК , нестандартная гамма-аминокислота), являются основными возбуждающими и тормозящими нейромедиаторами. Гидроксипролин (основной компонент соединительной ткани коллагена) синтезируют из п ролина ; стандартная аминокислота глицин используется для синтеза порфиринов , используемых в эритроцитах. Нестандартный карнитин используется для транспорта липидов.

Из-за своей биологической значимости аминокислоты играют важную роль в питании и обычно используются в пищевых добавках, удобрениях и пищевых технологиях. В промышленности аминокислоты используются при производстве лекарств, биоразлагаемого пластика и хиральных катализаторов.

1. Аминокислоты, белки и питание

О биологической роли и последствиях дефицита аминокислот в организме человека см. информацию в таблицах незаменимых и заменимых аминокислот.

При введении в организм человека с пищей, 20 стандартных аминокислот либо используются для синтеза белков и других биомолекул, либо окисляются в мочевину и углекислый газ в качестве источника энергии. Окисление начинается с удаления аминогруппы через трансаминазу, а затем аминогруппа включается в цикл мочевины. Другой продукт трансамидирования - кетокислота, которая входит в цикл лимонной кислоты. Глюкогенные аминокислоты также могут быть преобразованы в глюкозу посредством глюконеогенеза.

Из 20 стандартных аминокислот , 8 (валин , изолейцин , лейцин , лизин , метионин , треонин , триптофан и фенилаланин ) называют незаменимыми потому, что человеческий организм не может синтезировать их самостоятельно из других соединений в необходимых для нормального роста количествах, их можно получить только с пищей. Однако по современным представлениям Гистидин и Аргинин также являются незаменимыми аминокислотами для детей. Другие могут быть условно незаменимы для людей определенного возраста или людей, имеющих какие-либо заболевания.

Кроме того, Цистеин , Таурин , считаются полузаменимыми аминокислотами у детей (хотя таурин технически не является аминокислотой), потому что метаболические пути, которые синтезируют эти аминокислоты, у детей еще не полностью развиты. Необходимые количества аминокислот также зависят от возраста и здоровья человека, поэтому довольно сложно давать здесь общие диетические рекомендации.

БЕЛКИ

Белки́ (протеины, полипептиды) — высокомолекулярные органические вещества , состоящие из альфа- аминокислот , соединённых в цепочку пептидной связью . В живых организмах аминокислотный состав белков определяется генетическим кодом , при синтезе в большинстве случаев используются 20 стандартных аминокислот .

Рис. 9. Белки не только пища... Типы белковых соединений.

Каждый живой организм состоит из белков . Различные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками. Дефицит белков в организме опасен для здоровья. Каждый белок уникален и существует для специальных целей.


Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Стоит подчеркнть, что современная наука о питании утверждает, что белок должен удовлетворять потребности организма в аминокислотах не только по количеству. Данные вещества должны поступать в организм человека в определенных соотношениях между собой.

Процесс синтеза белков идет в организме постоянно. Если хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям здоровья - от расстройств пищеварения до депрессии и замедления роста у детей. Разумеется, данное рассмотрение вопроса весьма упрощенное, т.к. функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК.

Также, кроме белков, из аминокислот образуется большое количество веществ небелковой природы (см. ниже), выполняющих специальные функции. К ним, напроимер, относится холин (витаминоподобное вещество, входящее в состав фосфолипидов и являющееся предшественником нейромедиатора ацетилхолина - Нейромедиаторы - это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты крайне необходимы для нормальной работы головного мозга).

2. Небелковые функции аминокислот

Нейромедиатор аминокислоты

Прим.: Нейромедиаторы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам. Для получения информации от собственных тканей и органов организм человека синтезирует особые химические вещества - нейромедиаторы. Все внутренние ткани и органы тела человека, «подчиненные» вегетативной нервной системе (ВНС), снабжены нервами (иннервированы), т. е. функциями организма управляют нервные клетки. Они как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них корректирующие воздействия идут к периферии. Любое нарушение вегетативной регуляции приводит к сбоям в работе внутренних органов. Передача информации, или управление, осуществляется с помощью специальных химических веществ-посредников, которые называются медиаторами (от лат. mediator - посредник) или нейромедиаторами. По своей химической природе медиаторы относятся к различным группам: биогенным аминам, аминокислотам, нейропептидам и т. д. В настоящее время изучено более 50 соединений, относящихся к медиаторам.

В организме человека многие аминокислоты используются для синтеза других молекул, например:

  • Триптофан является предшественником нейромедиатора серотонина.
  • L-Тирозин и его предшественник фенилаланин являются предшественниками нейромедиаторов дофамина катехоламинов, адреналина и норадреналина.
  • Глицин является предшественником порфиринов, таких как гем.
  • Аргинин является предшественником оксида азота.
  • Орнитин и S-аденозилметионин являются предшественниками полиаминов.
  • Аспартат, Глицин и глутамин являются предшественниками нуклеотидов.

Тем не менее, все еще известны не все функции других многочисленных нестандартных аминокислот . Некоторые нестандартные аминокислоты используются растениями для защиты от травоядных животных. Например, канаванин является аналогом аргинина, который содержится во многих бобовых, и в особо крупных количествах в Canavalia gladiata (канавалия мечевидная). Эта аминокислота защищает растения от хищников, например насекомых, и при употреблении некоторых необработанных бобовых может вызывать заболевания у людей.

Классификация протеиногенных аминокислот

Рассмотрим классификацию на примере 20 протеиногенных α-аминокислот, необходимых для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α-аминокислотами. На их примере можно показать дополнительные способы классификации. Названия аминокислот обычно сокращаются до 3-х буквенного обозначения (см. рис. полипептидной цепи вверху страницы). Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

1. По строению бокового радикала выделяют:

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин) — соединения, не содержащие ароматических связей.
  • ароматические (фенилаланин, тирозин, триптофан)

Ароматические соединения (арены)

— циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения.

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность;

  • серусодержащие (цистеин, метионин), содержащие атом серы S
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH 2 -группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

2. По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

3. По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

4. По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей - незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е.их синтез происходит в недостаточном количестве, особенно это касается детей.

Таблица 1. Классификация аминокислот

Химическая структура

Полярность боковой цепи

Изоэлектри-ческая точка рI

Молеку-лярная масса, г/моль

Степень гидрофильности

Полярность боковой цепи

1. Алифатические

Высокогидрофильные

Аланин

Глютамин

Валин *

Аспарагин

Глицин

Глютаминовая кислота

10,2

Изолейцин*

Гистидин

10,3

Лейцин*

Аспарагиновая кислота

11,0

2. Серосодержащие

Лизин *

15,0

Метионин *

Аргинин

20,0

Цистеин

Умеренно гидрофильные

3. Ароматические

Треонин *

Тирозин

Серин

Триптофан*

Триптофан *

Фенилаланин*

Пролин

4. Оксиаминокислоты

Тирозин

Серин

Высокогидрофобные

Треонин *

Аминокислоты, формулы которых рассматриваются в курсе химии старшей школы, являются важными веществами для человеческого организма. Белки, состоящие из аминокислотных остатков, необходимы человеку для полноценной жизнедеятельности.

Определение

Аминокислоты, формулы которых будут рассмотрены ниже, являются органическими соединениями, в молекулах которых содержатся амино- и карбоксильные группы. Карбоксил состоит из карбонильной и гидроксильной группировки.

Можно рассматривать аминокислоты в качестве производных карбоновых кислот, где атом водорода замещен на аминогруппу.

Особенности химических свойств

Аминокислоты, общая формула которых может быть представлена в виде CnH2nNH2COOH, являются амфотерными химическими соединениями.

Присутствие в их молекулах двух функциональных групп объясняет возможность проявления этими органическими веществами основных и кислотных свойств.

Их водные растворы имеют свойства буферных растворов. Цвиттер-ион - аминокислоты, где аминогруппа имеет вид NH3+, а карбоксил представлен как -COO-. Молекула подобного вида обладает существенным дипольным моментом, при этом суммарный заряд равен нулю. На таких молекулах выстроены кристаллы многих аминокислот.

Среди важнейших химических свойств данного класса веществ можно выделить процессы поликонденсации, в результате которых образуются полиамиды, включая белки, пептиды, нейлон.

Аминокислоты, общая формула которых имеет вид CnH2nNH2COOH, реагируют с кислотами, основаниями, оксидами металлов, солями слабых кислот. Особый интерес представляют взаимодействия аминокислот со спиртами, относящиеся к этерификации.

Особенности изомерии

Для того чтобы записать структурные формулы аминокислот, отметим, что многие аминокислоты, принимающие участие в биохимических превращениях, содержат аминогруппу в a-положении от карбоксильной группы. Такой углеродный атом является а аминокислоты считают оптическими изомерами.

Структурная формула аминокислот дает представление о расположении основных функциональных групп, входящих в состав данного вещества, относительно активного углеродного атома.

Природные аминокислоты, которые входят в состав белковых молекул, являются представителями L-ряда.

Для оптических изомеров аминокислот характерна самопроизвольная медленная неферментативная рацемизация.

Особенности a-соединений

Любая формула веществ этого вида предполагает расположение аминогруппы у второго углеродного атома. формулы которых рассматривают даже в школьном курсе биологии, также принадлежат к этому виду. Например, к ним относится аланин, аспарагин, серин, лейцин, тирозин, фенилаланин, валин. Именно эти соединения составляют генетический код человека. Помимо стандартных соединений? также в белковых молекулах обнаружены нестандартные аминокислоты, являющиеся их производными.

Классификация по синтезу

Как можно разделить незаменимые аминокислоты? Формулы этого класса подразделяют по физиологическому признаку на полузаменимые, способные синтезироваться в человеческом организме. Выделяют и обычные соединения, синтезируемые в любом живом организме.

Подразделение по радикальным и функциональным группам

Формула аминокислот отличается по строению радикала (боковой группы). Существует деление на неполярные молекулы, содержащие гидрофобный неполярный радикал, а также на заряженные полярные группы. В качестве отдельной группы в биохимии рассматривают гистидин, триптофан, тирозин. В зависимости от функциональных групп выделяют несколько групп. Алифатические соединения представлены:

  • моноаминомонокарбоновыми соединениями, в качестве которых можно рассматривать глицин, валин, аланин, лейцин;
  • оксимонокаминокарбоновыми веществами: треонином, серином;
  • моноаминокарбоновыми: глутаминовой, аспарагиновой кислотой;
  • серосодержащими соединениями: метионином, цистеином;
  • диаминомонокарбоновыми веществами: лизином, гистидином, аргинином;
  • гетероциклическими: пролином, гистидином, трпитофаном/

Любая формула аминокислот может быть записана в общем виде, отличаться будут только радикальные группы.

Качественное определение

Для того чтобы обнаружить незначительные количества аминокислот, проводится В процессе нагревания аминокислот с избыточным количеством нингидрина получается лиловый продукт, если кислота имеет свободную a-аминогруппу, а для защищенной группы характерно получение желтого продукта. Данная методика имеет высокую чувствительность, применяется для колориметрического выявления аминокислот. На ее основе были создан метод распределительной хроматографии на бумаге, внедренный Мартином в 1944 году.

Эту же химическую реакцию применяют в автоматическом анализаторе аминокислот. Прибор, созданный Муром, Шпакманом, Стейном, основывается на разделении аминокислотной смеси в колонках, которые заполнены Из колонки поступает ток элюента в смеситель, сюда же идет нингидрин.

По интенсивности получаемой окраски судят о количественном содержании аминокислот. Показания фиксирует фотоэлектроколориметр, регистрирует самописец.

Подобная технология в настоящее время используется в клинической практике при проведении анализов крови, спинномозговой жидкости, мочи. Она позволяет дать полную картину качественного состава аминокислот, содержащихся в биологических жидкостях, определить в них нестандартные азотсодержащие вещества.

Особенности номенклатуры

Как правильно назвать аминокислоты? Формулы и названия этих соединений дают по международной номенклатуре ИЮПАК. К соответствующей карбоновой кислоте добавляют положение аминогруппы, начиная нумерацию с углеводорода, стоящего при карбоксильной группе.

Например, 2-аминоэтановая кислота. Помимо международной номенклатуры есть тривиальные названия, которыми пользуются в биохимии. Так, аминоуксусная кислота - это глицин, используемый в современной медицине.
При наличии в молекуле двух карбоксильных групп в названии добавляется суффикс -дионовая. Например, 2-аминобутандионовая кислота.

Для всех представителей этого класса характерна структурная изомерия, обусловленная изменениями в строении углеродной цепи, а также расположением карбоксильной и аминогрупп. Помимо глицина (простейшего представителя данного класса кислородсодержащих органических веществ)? остальные соединения имеют зеркальные антиподы (оптические изомеры).

Применение

Аминокислоты распространены в природе, они являются основой для построения животных и растительных белков. Эти соединения применяются в медицине в случае сильного истощения организма, например после сложных хирургических операций. Глутаминовая кислота помогает бороться с нервными заболеваниями, для лечения язвы желудка используется гистидин. При синтезе синтетических волокон (капрона, энанта) в качестве исходного сырья выступает аминокапроновая и аминоэнантоваяя кислота.

Заключение

Аминокислоты являются органическими соединениями, которые в своем составе имеют две функциональные группы. Именно особенности строения объясняют двойственность их химических свойств, а также специфику их использования. По результатам научно-исследовательских экспериментов удалось установить, что биомасса живых организмов, которые живут на нашей планете, в сумме составляет 1,8·1012-2,4·1012 тонны сухого вещества. Аминокислоты являются исходными мономерами в биосинтезе белковых молекул, без которого невозможно существование человека и животных.

В зависимости от физиологических признаков существует подразделение всех аминокислот на незаменимые вещества, синтез которых не осуществляется в организме человека и млекопитающих. Для того чтобы не возникало нарушений в обменных процессах, важно употреблять продукты питания, в которых есть эти аминокислоты.

Именно эти соединения являются своеобразными «кирпичиками», которые используются для построения биополимеров-белков. В зависимости от того, какие именно аминокислотные остатки, в какой последовательности будут выстраиваться в структуру белка, образующийся белок имеет определенные физические и химические свойства и области применения. Благодаря качественным реакциям на функциональные группы биохимики определяют состав белковых молекул, ищут новые пути синтеза индивидуальных биополимеров, необходимых для организма человека.

Все природные аминокислоты можно разделить на следующие основные группы:

1) алифатические предельные аминокислоты (глицин, аланин);

2) серосодержащие аминокислоты (цистеин);

3) аминокислоты с алифатической гидроксильной группой (серин);

4) ароматические аминокислоты (фенилаланин, тирозин);

5) аминокислоты с кислотным радикалом (глутаминовая кислота);

6) аминокислоты с основным радикалом (лизин).

Изомерия. Во всех a -аминокислотах, кроме глицина, a -углеродный атом связан с четырьмя разными заместителями, поэтому все эти аминокислоты могут существовать в виде двух изомеров, являющихся зеркальными отражениями друг друга.

Получение. 1. Гидролиз белковых веществ обычно дает сложные смеси аминокислот. Однако разработан ряд методов, позволяющих из сложных смесей получать отдельные чистые аминокислоты.

2. Замещение галогена на аминогруппу в соответствующих галогенокислотах. Этот способ получения аминокислот полностью аналогичен получению аминов из гало-генопроизводных алканов и аммиака:

Физические свойства. Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус. Они плавятся при высоких температурах и обычно при этом разлагаются. В парообразное состояние переходить не могут.

Химические свойства. Аминокислоты - это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион:

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп. Так, глутаминовая кислота образует кислый раствор (две группы -СООН, одна -NH 2), лизин - щелочной (одна группа -СООН, две -NH 2).

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир:

Важнейшее свойство аминокислот - их способность к конденсации с образованием пептидов.

Пептиды. Пептиды. - это продукты конденсации двух или более молекул аминокислот. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью -СО-NH -.

Полученное соединение называют дипептидом. Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбоксильную группу и может реагировать еще с одной молекулой аминокислоты:

Продукт реакции называется трипептидом. Процесс наращивания пептидной цепи может продолжаться в принципе неограниченно (поликонденсация) и приводить к веществам с очень высокой молекулярной массой (белкам).

Основное свойство пептидов - способность к гидролизу. При гидролизе происходит полное или частичное расщепление пептидной цепи и образуются более короткие пептиды с меньшей молекулярной массой или а-аминокислоты, составляющие цепь. Анализ продуктов полного гидролиза позволяет установить аминокислотный состав пептида. Полный гидролиз происходит при длительном нагревании пептида с концентрированной соляной кислотой.

Гидролиз пептидов может происходить в кислой или щелочной среде, а также под действием ферментов. В кислой и щелочной средах образуются соли аминокислот:

Ферментативный гидролиз важен тем, что протекает селективно, т. е. позволяет расщеплять строго определенные участки пептидной цепи.

Качественные реакции на аминокислоты. 1) Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом. 2) При нагревании ароматических аминокислот с концентрированной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет. Эта реакция называется ксантопротеиновой (от греч. ксантос - желтый).

Белки. Белки - это природные полипептиды с высокими значениями молекулярной массы (от10 000 до десятков миллионов). Они входят в состав всех живых организмов и выполняют разнообразные биологические функции.

Строение. Можно выделить четыре уровня в строении полипептидной цепи. Первичная структура белка - это конкретная последовательность аминокислот в полипептидной цепи. Пептидная цепь имеет линейную структуру только у небольшого числа белков. В большинстве белков пептидная цепь определенным образом свернута в пространстве.

Вторичная структура - это конформация полипептидной цепи, т. е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и СО. Основной способ укладки цепи - спираль.

Третичная структура белка - это трехмерная конфигурация закрученной спирали в пространстве. Третичная структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками, находящимися в разных местах полипептидной цепи. В образовании третичной структуры участвуют также ионные взаимодействия противоположно заряженных групп NH 3 + и СОО- и гидрофобные взаимодействия , т. е. стремление молекулы белка свернуться так, чтобы гидрофобные углеводородные остатки оказались внутри структуры.

Третичная структура - высшая форма пространственной организации белков. Однако некоторые белки (например, гемоглобин) имеют четвертичную структуру, которая образуется за счет взаимодействия между разными полипептидными цепями.

Физические свойства белков весьма разнообразны и определяютсяих строением. По физическим свойствам белки делят на два класса: глобулярные белки растворяются в воде или образуют коллоидные растворы, фибриллярные белки в воде нерастворимы.

Химические свойства. 1. Разрушение вторичной и третичной структуры белка с сохранением первичной структуры называют денатурацией . Она происходит при нагревании, изменении кислотности среды, действии излучения. Пример денатурации - свертывание яичных белков при варке яиц. Денатурация бывает обратимой и необратимой. Необратимая денатурация может быть вызвана образованием нерастворимых веществ при действии на белки солей тяжелых металлов - свинца или ртути.

2. Гидролиз белков - это необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Анализируя продукты гидролиза, можно установить количественный состав белков.

3. Для белков известно несколько качественных реакций. Все соединения, содержащие пептидную связь, дают фиолетовое окрашивание при действии на них солей меди (II) в щелочном растворе. Эта реакция называется биуретовой. Белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), дают желтое окрашивание при действии концентрированной азотной кислоты (ксантопротеиновая реакция).

Биологическое значение белков:

1. Абсолютно все химические реакции в организме протекают в присутствии катализаторов - ферментов. Все известные ферменты представляют собой белковые молекулы. Белки - это очень мощные и селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

2. Некоторые белки выполняют транспортные функции и переносят молекулы или ионы в места синтеза или накопления. Например, содержащийся в крови белок гемоглобин переносит кислород к тканям, а белок миоглобин запасает кислород в мышцах.

3. Белки - это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

4. Белки играют важную роль в иммунной системе организма. Существуют специфические белки (антитела), которые способны распознавать и связывать чужеродные объекты - вирусы, бактерии, чужие клетки.

5. Белки-рецепторы воспринимают и передают сигналы, поступающие от соседних клеток или из окружающей среды. Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином. Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

Из приведенного перечня функций белков ясно, что белки жизненно необходимы любому организму и являются, следовательно, важнейшей составной частью продуктов питания. В процессе пищеварения белки гидролизуются до аминокислот, которые служат исходным сырьем для синтеза белков, необходимых данному организму. Существуют аминокислоты, которые организм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называют незаменимыми.

Лекция: Общие сведения о полимерах и их классификация.

Химическое поведение аминокислот определяется двумя функциональными группами -NН 2 и -СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных - как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Реакции, обусловленные аминогруппой. С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН 2 -группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой . При участиикарбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при a-углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (-NO 2 , -СС1 3 , -СООН, -COR и т.д.), поляризующий связь С®СООН, то у карбоновых кислот легко протекают реакции декарбоксилирования . Декарбоксилирование a-аминокислот, содержащих в качестве заместителя + NH 3 -группу, приводит к образованию биогенных аминов. В живом орга-низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

В лабораторных условиях реакцию осуществляется при на-гревании a-аминокислоты в присутствии поглотителей СО 2 , например, Ва(ОН) 2 .

При декарбоксилировании b-фенил-a-аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.


Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходитобразованиединитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Окислительно-восстановительные переходы имеют место в системе цистеин - цистин:

2НS CH 2 CH(NH 2)COOH ¾¾¾® HOOCCH(NH 2)CH 2 S-S CH 2 CH(NH 2)COOH

HOOCCH(NH 2)CH 2 S-S CH 2 CH(NH 2)COOH ¾¾¾® 2 НS CH 2 CH(NH 2)COOH

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все a-аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

Действие азотистой кислоты на алифатические аминокислоты приводит кобразованию гидроксикислот, на ароматические - диазосоединений.

Образование гидроксикислот:

Реакция диазотирования:

(диазосоединение)

1. с выделением молекулярного азота N 2:

2. без выделения молекулярного азота N 2:

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света (400-800 нм). Ауксохромная группа

СООН изменяет и усиливает окраску за счет π, π - сопряжения с π - электронной системой основной группы хромофора.

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды - дикетопиперазины:

валин (Val) диизопропильное производное

дикетопиперазина

При нагревании b-аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

β-аминовалериановая кислота пентен-2-овая кислота

(3-аминопентановая кислота)

Нагревание g- и d-аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов - лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

(4-амино-3-метилбутановая кислота) кислоты

© Yulia Furman - stock.adobe.com

    Аминокислоты — органические вещества, состоящие из углеводородного скелета и двух дополнительных групп: аминной и карбоксильной. Последние два радикала обусловливают уникальные свойства аминокислот — они могут проявлять свойства как кислот, так и щелочей: первые — за счет карбоксильной группы, вторые — за счет аминогруппы.

    Итак, мы выяснили, что такое аминокислоты с точки зрения биохимии. Теперь рассмотрим их влияние на организм и применение в спорте. Для спортсменов аминокислоты важны своим участием в . Именно из отдельных аминокислот строятся нашего тела — мышечная, скелетная, печеночная, соединительная ткани. Помимо этого, некоторые аминокислоты напрямую участвуют в обмене веществ. К примеру, аргинин участвует в орнитиновом цикле мочевины — уникальном механизме обезвреживания аммиака, образующегося в печени в процессе переваривания белков.

    • Из тирозина в коре надпочечников синтезируются катехоламины — адреналин и норадреналин — гормоны, функция которых — поддержание тонуса сердечно сосудистой системы, мгновенная реакция на стрессовую ситуацию.
    • Триптофан — предшественник гормона сна — мелатонина, вырабатывающегося в шишковидном теле головного мозга — эпифизе. При недостатке этой аминокислоты в рационе процесс засыпания усложняется, развивается бессонница и ряд других заболеваний, ею обусловленных.

    Перечислять можно долго, однако остановимся на аминокислоте, значение которой особенно велико для спортсменов и людей, умеренно занимающихся спортом.

    Для чего нужен глютамин

    — аминокислота, лимитирующая синтез протеина, из которого состоит наша иммунная ткань — лимфатические узлы и отдельные образования лимфоидной ткани. Значение этой системы переоценить трудно: без должного сопротивления инфекциям ни о каком тренировочном процессе говорить не приходится. Тем более, что каждая тренировка — не важно, профессиональная или любительская — это дозированный стресс для организма.

    Стресс — необходимое условие, чтобы сдвинуть с места нашу «точку равновесия», то есть вызвать определенные биохимические и физиологические изменения в организме. Любой стресс — это цепь реакций, мобилизующих тело. В промежуток, характеризующий регресс каскада реакций симпатоадреналовой системы (а именно они и представляют собой стресс), происходит снижение синтеза лимфоидной ткани. По этой причине процесс распада превышает скорость синтеза, а значит, иммунитет ослабевает. Так вот, дополнительный прием глютамина сводит к минимуму этот крайне нежелательный, но неизбежный эффект физической нагрузки

    Незаменимые и заменимые аминокислоты

    Чтобы понять, для чего нужны незаменимые аминокислоты в спорте, необходимо иметь общие представления о белковом обмене. Потребленные человеком белки на уровне желудочно-кишечного тракта обрабатываются ферментами — веществами, расщепляющими пищу, которую мы употребили.

    В частности, белки распадаются сперва до пептидов — отдельных цепочек аминокислот, не имеющих четвертичной пространственной структуры. И уже пептиды распадутся на отдельные аминокислоты. Те, в свою очередь, усваиваются организмом человека. Это значит, что аминокислоты всасываются в кровь и только с этого этапа могут быть использованы в качестве продуктов для синтеза белка тела.

    Забегая вперед скажем, что прием отдельных аминокислот в спорте сокращает этот этап — отдельные аминокислоты будут сразу же всасываться в кровь и процессы синтеза, а также биологический эффект аминокислот наступят быстрее.

    Всего существует двадцать аминокислот. Чтобы процесс синтеза белка в теле человека стал возможным в принципе, в рационе человека должен присутствовать полный спектр — все 20 соединений.

    Незаменимые

    Вот с этого момента и появляется понятие незаменимости. К незаменимым аминокислотам относятся те, которые наше тело не способно синтезировать самостоятельно из других аминокислот. А это значит, что появится им, кроме как из продуктов питания, неоткуда. Таких аминокислот насчитывается 8 плюс 2 частично-заменимые.

    Рассмотрим в таблице, в каких продуктах содержится каждая незаменимая аминокислота и какова ее роль в организме человека:

    Название В каких продуктах содержится Роль в организме
    Орехи, овес, рыба, яйца, курица, Снижает содержание сахара в крови
    Нут, чечевица, кешью, мясо, рыба, яйца, печень, мясо Восстанавливает мышечную ткань
    Амарант, пшеница, рыба, мясо, большинство молочных продуктов Принимает участие в усвоении кальция
    Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые Принимает участие в обменных процессах азота
    Фенилаланин , орехи, творог, молоко, рыба, яйца, разные бобовые Улучшение памяти
    Треонин Яйца, орехи, бобы, молочные продукты Синтезирует коллаген
    , яйца, мясо, рыба, бобовые, чечевица Принимает участие в защите от радиации
    Триптофан Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, мясо, рыба, сушенные Улучшает и делает сон глубже
    Гистидин (частично-заменимая) Чечевица, соевые бобы, арахис, лосось, говяжье и куриное филе, свиная вырезка Принимает участие в противовоспалительных реакциях
    (частично-заменимая) Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис Способствует росту и восстановлению тканей организма

    В достаточном количестве аминокислоты содержатся в животных источниках белка — рыбе, мясе, птице. При отсутствии таковых в рационе весьма целесообразен прием недостающих аминокислот в качестве добавок спортивного питания, что особенно актуально для спортсменов-вегетарианцев.

    Основное внимание последним стоит обратить на такие добавки, как ВСАА — смесь лейцина, валина и изолейцина. Именно по этим аминокислотам возможна «просадка» в рационе, не содержащем животных источников белка. Для спортсмена (как профессионала, так и любителя) это абсолютно не допустимо, так как в долгосрочной перспективе приведет к катаболизму со стороны внутренних органов и к заболеваниям последних. В первую очередь страдает от недостатка аминокислот печень.

    © conejota - stock.adobe.com

    Заменимые

    Заменимые аминокислоты и их роль рассмотрим в таблице ниже:

    Что происходит с аминокислотами и протеинами в вашем теле

    Аминокислоты, попавшие в кровоток, в первую очередь распределяются по тканям тела, где в них есть наибольшая потребность. Если у вас есть «просадка» по определенным аминокислотам, прием дополнительного количества белка, богатого ими, или прием дополнительных аминокислот, будет особенно полезен.

    Синтез белка происходит на клеточном уровне. В каждой клетка есть ядро — самая важная часть клетки. Именно в ней происходит считывание генетической информации и ее воспроизводство. По сути, вся информация о строении клеток закодирована в последовательности аминокислот.

    Как выбрать аминокислоты рядовому любителю, умеренно занимающемуся спортом 3-4 раза в неделю? Никак. Они ему просто не нужны.

    Более важны для современного человека следующие рекомендации:

  1. Начать питаться регулярно в одно и то же время.
  2. Сбалансировать рацион по белкам жирам и углеводам.
  3. Убрать из рациона фастфуд и некачественную пищу.
  4. Начать употреблять достаточное количество воды — 30 мл на килограмм массы тела.
  5. Отказаться от рафинированного сахара.

Эти элементарные манипуляции принесут гораздо больше, чем добавление в рацион каких бы то ни было добавок. Более того, добавки без соблюдения указанных условий будут абсолютно бесполезны.

Зачем знать, какие аминокислоты вам нужны, если вы питаетесь непонятно чем? Откуда вы знаете, из чего сделаны котлеты в столовой? Или сосиски? Или что за мясо в котлете в бургера? Про начинку для пиццы вообще промолчим.

Поэтому прежде, чем делать вывод о потребности в аминокислотах, нужно начать питаться простыми, чистыми и полезными продуктами и выполнить описанные выше рекомендации.

То же самое касается дополнительного приема белка. Если в вашем рационе присутствует белок, в количестве 1,5- 2 г на килограмм массы тела, никакой дополнительный белок вам не нужен. Лучше потратить деньги на покупку качественных продуктов питания.

Важно также понимать, что протеин и аминокислоты — это не фармакологические препараты! Это всего лишь добавки спортивного питания. И ключевое слово здесь — добавки. Добавляют их по потребности.

Чтобы понять, есть ли потребность, нужно контролировать свое питание. Если вы уже прошли описанные выше шаги и поняли, что добавки все-таки необходимы, первое, что вы должны сделать — пойти в магазин спортивного питания и выбрать соответствующий продукт в соответствии с финансовыми возможностями. Единственное, чего не стоит делать новичкам — это покупать аминокислоты с натуральным вкусом: пить их будет затруднительно по причине чрезвычайной горечи.

Вред, побочные эффекты, противопоказания

Если у вас есть заболевания, характеризующиеся непереносимостью одной из аминокислот, вы об этом знаете с рождения, так же, как и ваши родители. Этой аминокислоты нужно избегать и дальше. Если же этого нет, говорить о вреде и противопоказаниях добавок нет смысла, поскольку это полностью натуральные вещества.

Аминокислоты — составляющая часть белка, белок — привычная часть рациона человека. Все то, что продается в магазинах спортивного питания — не является фармакологическими препаратами! Только дилетанты могут говорить о каком-то вреде и противопоказаниях. По той же причине нет смысла рассматривать такое понятие, как побочные эффекты аминокислот — при умеренному потреблении никаких негативных реакций быть не может.

Трезво подходите к своему рациону и спортивным тренировкам! Будьте здоровы!