Конспект урока на тему: "Периодический закон и периодическая система химических элементов Д.И. Менделеева". План-конспект урока. Структура периодической таблитсы елементов Открытый урок структура периодической системы

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Пояснительная записка

Данный урок проводится в основном курсе средней школы для обучающихся 8 класса в 1 полугодии.

Актуальность разработки урока на основе использования ресурса web-сайта «Самая необычная Периодическая система химических элементов Д.И. Менделеева» продиктована требованием ФГОС нового поколения, применением ИКТ-технологий, предусмотренных профессиональным стандартом педагога, включающим информационные умения учителя.

Практическая значимость разработки данной модели урока заключается в развитии ряда ключевых компетентностей, необходимых для целостности изучаемого курса химии.

Используемый web-сайт «Самая необычная Периодическая система химических элементов Д.И. Менделеева» является образовательным продуктом, разработанным моими учениками в 2013 году. Основной педагогической задачей данного ресурса является создание простой для пользователя интерактивной модели Периодической системы химических элементов Д.И. Менделеева.

На данном уроке используются разнообразные формы и методы работы, цель которых развивать у обучающихся умения анализировать, сравнивать, наблюдать, делать выводы. В процессе урока учитель задает вопросы, возможные ответы на них выделяются в тексте курсивом. Материал урока соответствует программе, органично связан с предыдущими занятиями.

Эмоциональную окраску урока усиливает не только применение интерактивной Периодической системы, но и использование презентации с различными иллюстрациями, выполненной обучающимся, а также демонстрация собственных вариантов проекта «Моя таблица Менделеева», включение забавной песенки Тома Лерера.

У меня современный кабинет химии, в котором есть мультимедийный компьютерный класс. При наличии такой лаборатории на каждом рабочем столе есть ноутбук. Это позволяет максимально упростить работу на уроке для учеников, а для учителя – отследить ход выполнения заданий в парах на каждом рабочем месте.

Оценивание деятельности обучающихся . Количество оценок за описанный урок минимально: оцениваются только выступление ученика об открытии Периодического закона и отдельные участники урока, правильно ответившие на вопросы викторины, участвующие в оформлении таблицы в конце урока.

Проверить эффективность усвоенных знаний можно будет на следующем уроке, когда учащиеся сдадут домашнее задание – проект «Моя таблица Менделеева». Основная цель создания проекта: показать обучающимся, как фактически могло произойти открытие Периодического закона (вопреки сложившемуся мнению о том, что таблица Дмитрию Ивановичу приснилась), прочувствовать сложность классификации объектов.

Основные критерии оценивания таблиц могут быть такие:

  • Актуальность темы («химизм» создания таблицы, т.е. классификация химических понятий или веществ, биографий ученых, химиков-лауреатов Нобелевской премии разных лет и т.д.). Если ученик не может найти в предмете «Химия» объектов для классификации, он может обратиться к другим источникам, т.е. классифицировать и сопоставлять, например, города по численности населения и различным странам. При этом в «периоде» может быть страна, а в «группе» располагаются города по увеличению численности населения. Каждый «элемент» таблицы ученика должен иметь название, цифру, обозначающую численность населения, обозначаться символом. Например, в таблице городов предложен город Ростов-на-Дону. Символом его может быть Ro . Если встречаются несколько городов, начинающиеся на одну и ту же букву, то следует к заглавной букве добавлять следующую. Допустим, есть два города на букву «р»: Ростов-на-Дону и Ровно. Тогда для Ростова-на-Дону будет вариант Ro , а для города Ровно –Rb .
  • Оформление работы. Работа может иметь вариант рукописного оформления, набрана в Word или Excel (работы 2013 г.). Размер таблицы я не ограничиваю. Но предпочитаю формат А4. В моей картотеке таблиц есть, например, вариант, состоящий из двух листов ватмана. Работа обязательно должна быть красочной, иногда содержит картинки или фотографии. Аккуратность приветствуется.
  • Оригинальность работы.
  • Аннотация к работе включает следующие параметры: название работы, обоснованность принципа расположения выбранных «элементов». Ученик может также аргументировать цветовую палитру своей таблицы.
  • Презентабельность работы. Каждый ученик защищает свой проект, для чего я предусматриваю в программе 1 урок (это никак не нарушает изложению программного материала по химии, т.к. в конце года программа предусматривает до 6 уроков, отведенных на повторение курса через изучение биографий разных ученых, рассказы о веществах и явлениях).

Оценку периодической системе учащихся даю не только я. К обсуждению работ привлекаются старшеклассники, а также мои выпускники, которые могут оказывать практическую помощь восьмиклассникам при оформлении своей работы.

Ход оценивания работ обучающихся . Я и эксперты заполняем специальные листы, в которых проставляем оценки по заданным выше критериям по трехбалльной шкале: «5» - полное соответствие критерию; «3» - частичное соответствие критерию; «1» - полное несоответствие критерию. Затем баллы суммируются и выставляются обычные оценки в журнал. За этот вид деятельности ученик может получить несколько оценок. За каждый пункт критерия или только одну – суммарную. Неудовлетворительных отметок я не выставляю. В работе принимает участие ВЕСЬ класс.

Предложенный вид творческой работы предусматривает предварительную подготовку, поэтому учащиеся заранее получают задание на «создание своей системы». В этом случае я не объясняю принцип построения системы-оригинала, ребятам предстоит самостоятельно разобраться, как Дмитрий Иванович располагал известные в то время элементы, какими принципами руководствовался.

Оценка проекта обучающихся 8 класса «Моя таблица Менделеева»

Критерии

Оценка учителя

Оценка ученика

Суммарная оценка

Актуальность темы

Оформление работы

Оригинальность работы

Аннотация к работе

Презентабельность работы

Итоговая оценка

Основные понятия, используемые на уроке

  1. Атомная масса
  2. Вещество
  3. Группа (главная и побочная подгруппа)
  4. Металлы/неметаллы
  5. Оксиды (характеристика оксидов)
  6. Период
  7. Периодичность
  8. Периодический закон
  9. Радиус атома
  10. Свойства химического элемента
  11. Система
  12. Таблица
  13. Физический смысл основных величин Периодической системы
  14. Химический элемент

Цель урока

Изучить Периодический закон и структуру Периодической системы химических элементов Д.И. Менделеева.

Задачи урока

  1. Образовательная:
  • Анализ базы данных о химических элементах;
  • Научить видеть единство природы и общих законов ее развития.
  • Сформировать понятие «периодичность».
  • Изучить структуру Периодической системы химических элементов Д.И. Менделеева.
  1. Развивающая: Создать условия для развития у учащихся ключевых компетентностей: Информационной (извлечение первичной информации);Личностные (самоконтроль и самооценка);Познавательные (умение структурировать знания, умение выделять существенные характеристики объектов);Коммуникативной (продуктивная групповая коммуникация).
  2. Воспитывающая:способствовать развитию интеллектуальных ресурсов личности через самостоятельную работу с дополнительной литературой, интернет-технологиями; воспитание положительной мотивации обучения, правильной самооценки; умение общаться в коллективе, группе, строить диалог.

Тип урока

Урок изучения нового материала.

Технологии

ИКТ-технология, элементы технологии критического мышления , элементы технологии на основе эмоционально-образного восприятия.

Ожидаемые образовательные результаты

  • Личностные: формирование готовности учащихся к самообразованию на основе мотивации к обучению; формирование готовности к осознанному выбору дальнейшей образовательной траектории обучения с помощью составления плана работы на уроке; формирование коммуникативной компетентности в общении и сотрудничестве с одноклассниками через парную работу.
  • Метапредметные: формирование умения самостоятельно определять цели своего обучения и развитие мотива своей познавательной деятельности через целеполагание на уроке; формирование умения вести диалог.
  • Предметные: формирование первоначальных систематических представлений о Периодическом законе и Периодической системе элементов Д.И. Менделеева, явлении периодичности.

Формы обучения

Индивидуальная работа учащихся, работа в парах, фронтальная работа учителя с классом.

Средства обучения

Диалог, раздаточный материал, задание учителя, опыт взаимодействия с другими.

Этапы работы

  1. Организационный момент.
  2. Целеполагание и мотивация.
  3. Планирование деятельности.
  4. Актуализация знаний.
  5. Обобщение и систематизация знаний.
  6. Рефлексия.
  7. Домашнее задание.

Ход урока

1. Организационный момент

Взаимное приветствие учителя и учеников.

: Личностные: самоорганизация; коммуникативные – умение слушать.

2. Целеполагание и мотивация

Вступительное слово учителя. С глубокой древности, созерцая мир вокруг и восхищаясь природой, человек задавался вопросом: из чего, из какого вещества состоят окружающие человека тела, сам человек, Вселенная.

Учащимся предлагается рассмотреть следующие изображения: сезоны года, кардиограмма сердца (можно использовать макет сердца), схема «Строение солнечной системы»; Периодическая система химических элементов Д.И. Менделеева (разных типов) и ответить на вопрос:«Что объединяет все представленные изображения?» (Периодичность).

Постановка цели. Как вы думаете, ребята, о каком вопросе у нас сегодня пойдет речь (ученики делают предположения, что речь на уроке пойдет о Периодической системе химических элементов Д.И. Менделеева)? В тетради следует запись темы урока: «Структура Периодической системы».

Задания для учащихся:

  1. Подберите примеры, указывающие на периодичность в природе. (Движение космических тел вокруг центра Галактики, смена дня и ночи).
    Предложите однокоренные слова и словосочетания к слову «периодичность» (период, периодические издания ).
  2. Кто «автор» Периодического закона (Д.И. Менделеев )? Можете ли Вы «создать» Периодическую систему (ответ на этот вопрос будет отсрочен, он дается ребятам в качестве домашнего задания )?
  3. Блеф-игра «Верите ли вы, что…»
  4. После окончания школы вас могут наградить алюминиевой кружкой? (В настоящее время это невозможно. А вот Дмитрию Ивановичу Менделееву за открытие им Периодического закона преподнесли чашу из алюминия, т.к. в то время стоимость алюминия превышала цену на золото и платину.)
  5. Открытие Д.И. Менделеевым Периодического закона можно считать подвигом? (Дмитрий Иванович Менделеев предсказал несколько неизвестных в то время элементов экабор (скандий), экаалюминий (галлий), экасилиций (германий), экамарганец (технеций). Ну предсказал и предсказал. А в чем подвиг-то? (Здесь уместно предложить детям пофантазировать на тему подвига УЧЕНОГО) Дело в том, что у первого же открытого элемента галлия (Л. Буабодран, Франция), была неверно определена плотность, а значит и масса элемента, причем Д.И. Менделеев указал не только ошибку ученого, но и ее причину – недостаточную очистку образца галлия. Если бы Дмитрий Иванович ошибся с расчетами, то пострадал бы сам, ведь его имя было бы опорочено навсегда).

Учитель. Ребята, перед изучением новой темы, я бы хотела вместе с вами «нарисовать» портрет ученого. Определить, какими качествами должен обязательно обладать ученый (далее следуют предположения учащихся о некоторых качествах ученого: интеллект, энтузиазм, настойчивость, усидчивость, амбиции, решительность, оригинальность).

Развиваемые универсальные учебные действия : предметные учебные действия: умение анализировать предложенные картинки, находить между ними сходство. Личностные: установление связи между целью деятельности и ее мотивом. Регулятивные: саморегуляция. Познавательные: самостоятельное выделение и формулирование цели; доказательство своей точки зрения. Коммуникативные: умение слушать и вступать в диалог.

3. Планирование деятельности

8 февраля 2014 г. исполнилось 180 лет со дня рождения великого русского ученого Дмитрия Ивановича Менделеева. Сейчас мы посмотрим фрагмент фильма о великом ученом (далее следует фрагмент видеофильма «Русский да Винчи» или мультфильм «Три вопроса Менделееву») .

1 марта 1869 г . молодой и в то время мало кому известный русский ученый разослал химикам всего мира скромный печатный листок, озаглавленный «Опыт системы элементов, основанный на их атомном весе и химическом сходстве». Давайте окунемся в прошлое и узнаем немного о том, как был открыт Периодический закон. Далее следует рассказ ученика о разных вариантах Периодических систем (5-7 мин.) с использованием презентации.

Обучающиеся делают записи в тетради: формулировка Периодического закона и дата его открытия (по локальной сети учитель показывает сайт и раздел сайта Периодический закон).

Учитель. Как вы думаете, ребята, ученые сразу приняли Периодический закон? Поверили в него? Чтобы немного окунуться в ту эпоху, давайте прослушаем отрывок из стихотворения об открытии галлия .

Какие выводы следует сделать из этого отрывка (учащиеся предполагают, что для того чтобы поверить в новый закон, необходимы неопровержимые доказательства)?

Существует множество вариантов Периодических систем. Классификации подвергаются различные объекты: цветы, забракованные элементы, пищевые продукты и т.д. Все эти таблицы объединяют определенные принципы построения, т.е. структура.

Развиваемые универсальные учебные действия: регулятивные - составление плана и последовательности действий; познавательные – построение логической цепи рассуждений; коммуникативные – умение слушать и вступать в диалог, точно выражать свои мысли.

4. Актуализация знаний

Ко всем законам применим критерий сравнения – возможность предсказания нового, предвидения неизвестного. Сегодня Вам предстоит «открыть» для себя Периодическую систему, т.е. немного побыть учеными. Для этого необходимо выполнить задание.

Задание. У вас на рабочем столе - ноутбук с выходом в Интернет, есть инструкция (приложение 1) по работе с веб-сайтом «Самая необычная Периодическая система элементов Д.И. Менделеева». Проанализируйте интерфейс сайта, сделайте выводы; результаты отразите в карточке-инструкции (приложение 1).

При отсутствии мобильного компьютерного класса можно заготовить бумажные карточки-инструкции. В этом случае работу с сайтом учитель проводит вместе с учениками). Задание обучающимся учитель может: 1) разослать по локальной сети; 2) заранее оставить файл на рабочем столе каждого ноутбука. Обучающиеся могут дать ответ учителю, используя программу Paint или Word, т.к. другого вида обратной связи между главным (учительским) ноутбуком и мобильным классом (ученические ноутбуки) не предусмотрено.

Таблица для учащихся не содержит ответов. Работа выполняется в парах. На выполнение задания уместно отвести 10 минут. Учащиеся, первыми выполнившие задание, могут показать его всем по локальной сети (разрешить учащемуся показать демо).

Развиваемые универсальные учебные действия : личностные: понимание причин успешности учебной деятельности; регулятивные: нахождение ошибок с исправлением их самостоятельно или при помощи одноклассника, проявление настойчивости; коммуникативные: оценка действий партнера по выполнению задания, умение слушать и вступать в диалог.

5. Обобщение и систематизация знаний

Учитель проводит проверку работы учащихся и вместе с ними формулирует определение явления периодичности.

Учитель. Отличается ли структура Периодической системы, размещенной на сайте от табличной формы, предложенной Д.И. Менделеевым? Если да, то выделите сходные и отличительные признаки обеих таблиц (После выяснения общих признаков следует совместная формулировка явления периодичности).

Периодичность – закономерная повторяемость изменения явлений и свойств.

Развиваемые универсальные учебные действия : личностные: понимание причин успешности учебной деятельности; регулятивные: нахождение ошибок с исправлением их самостоятельно или при помощи одноклассника; коммуникативные – умение слушать и вступать в диалог.

6. Рефлексия

Развитие науки подтвердило слова самого Дмитрия Ивановича о развитии закона, эту фразу обучающиеся могли подготовить дома, отгадав ребус. Ответ: «Периодическому закону будущее грозит не разрушением, а только надстройки и развитие обещаются» . Здесь уместно также проверить знания на уроке с помощью коллекции ЦОР (проверка знаний периодов и групп).

В заключение урока звучит песня Тома Лерера.

Развиваемые универсальные учебные действия : предметные: проверка собственных знаний по предложенному тесту; регулятивные осознание полученных знаний и способов деятельности для достижения успешности; коммуникативные – участие в коллективном обсуждении.

7. Домашнее задание

  • §5, выполните письменные задания после параграфа: 1,4,5;
  • На уроке мы видели разные варианты Периодических систем. Дома я предлагаю Вам «создать» свою Периодическую систему. Данная работа будет выполнена в формате проекта. Название: «Моя таблица Менделеева». Цель: научиться классифицировать объекты, анализировать их свойства, уметь объяснять принцип построения своей системы элементов/объектов.

Самоанализ урока

Урок показал свою эффективность. Большинство проверенных домашних работ по созданию своей системы элементов полностью соответствовали критериям оценки, изложенным в тезисах, т.е. обучающиеся осознанно создавали табличные варианты своей системы выбранных элементов/объектов.

Проект «Моя таблица Менделеева», стартовавший как исключительно бумажный вариант, постепенно приобрел оцифрованную форму. Так появились презентации, табличные варианты в Excel и, наконец, ЦОР - сайт «Самая необычная Периодическая система элементов Д.И. Менделеева». Образцы работ обучающихся размещены на моем сайте, рубрика «Учащемуся», подрубрика «Работы моих учеников».

Критерии и показатели эффективности урока : положительный эмоциональный фон урока; кооперация обучающихся; суждения обучающихся относительно уровня собственных ответов и возможностей дальнейшего самообразования.


Периодическая система химических элементов Д. И. Менделеева

Основные понятия:

1. Порядковый номер химического элемента - номер, данный элементу при его нумерации. Показывает общее число электронов в атоме и число протонов в ядре, определяет заряд ядра атома данного химического элемента.

2. Период – химические элементы, расположенные в строчку (периодов всего 7). Период определяет количество энергетических уровней в атоме.

Малые периоды (1 – 3) включают только s - и p - элементы (элементы главных подгрупп) и состоят из одной строчки; большие (4 – 7) включают не только s - и p - элементы (элементы главных подгрупп), но и d - и f - элементы (элементы побочных подгрупп) и состоят из двух строчек.

3. Группы – химические элементы, расположенные в столбик (групп всего 8). Группа определяет количество электронов внешнего уровня для элементов главных подгрупп, а так же число валентных электронов в атоме химического элемента.

Главная подгруппа (А) – включает элементы больших и малых периодов (только s - и p - элементы).

Побочная подгруппа (В) – включает элементы только больших периодов (только d - или f - элементы).

4. Относительная атомная масса (A r ) – показывает, во сколько раз данный атом тяжелее 1/12 части атома 12 С, это безразмерная величина (для расчётов берут округлённое значение).

5. Изотопы – разновидность атомов одного и того же химического элемента, отличающиеся друг от друга только своей массой, с одинаковым порядковым номером.

Строение атома

Основные понятия:

1. Электронное облако – это модель квантовой механики, описывающая движение электрона в атоме.

2. Орбиталь (s , p , d , f ) – часть атомного пространства, в котором вероятность нахождения данного электрона наибольшая (~ 90%).

3. Энергетический уровень – это энергетический слой с определённым уровнем энергии находящихся на нём электронов.

Число энергетических уровней в атоме химического элемента равно номеру периода, в котором этот элемент расположен.

4. Максимально возможное число электронов на данном энергетическом уровне определяется по формуле:

N = 2 n 2 , где n – номер периода

5. Распределение орбиталей по уровням представлено схемой:

6. Химический элемент – это вид атомов с определённым зарядом ядра.

7. Состав атома :

Частица

Заряд

Масса

Кл

условные единицы

а.е.м.

Электрон (ē)

1.6 ∙ 10 -19

9.10 ∙ 10 -28

0.00055

Протон (p )

1.6 ∙ 10 -19

1.67 ∙ 10 -24

1.00728

Нейтрон (n )

1.67 ∙ 10 -24

1.00866

8. Состав атомного ядра :

·В состав ядра входят элементарные частицы –

протоны (p ) и нейтроны (n ).

·Т.к. практически вся масса атома сосредоточена в ядре, то округлённое значение A r химического элемента равно сумме протонов и нейтронов в ядре.

9. Общее число электронов в электронной оболочке атома равно числу протонов в ядре и порядковому номеру химического элемента.

Порядок заполнения уровней и подуровней электронами

I . Электронные формулы атомов химических элементов составляют в следующем порядке:

· Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;

· Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;

· Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N =2n 2 и с учётом того, что:

1. у элементов главных подгрупп (s -;p -элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu , Ag , Au , Cr , Nb , Mo , Ru , Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II . Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s…

2. Состояние атома с полностью или наполовину заполненным подуровнем (т. е. когда на каждой орбитали имеется по одному неспаренному электрону) является более устойчивым.

Этим объясняется «провал» электрона. Так, устойчивому состоянию атома хрома соответствует следующее распределение электронов:

Cr : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 , ане 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 ,

т. е. происходит «провал» электрона с 4s -подуровня на 3d -подуровень.

III . Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s -подуровня внешнего s -элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I иII групп.

Элементы, в атомах которых электронами заполняется p -подуровень внешнего энергетического уровня, называются p -элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III - VIII групп.

Элементы, в которых заполняется d -подуровень второго снаружи уровня, называются d -элементами . Это элементы вставных декад IV , V , VI периодов.

Элементы, в которых заполняется f -подуровень третьего снаружи уровня, называются f -элементами . К f -элементам относятся лантаноиды и актиноиды.

Периодический закон Д. И. Менделеева

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.

Основные положения

1. В периоде слева направо:

2) Заряд ядра – увеличивается

3) Количество энергоуровней – постоянно

4) Количество электронов на внешнем уровне - увеличивается

5) Радиус атомов – уменьшается

6) Электроотрицательность – увеличивается

Следовательно, внешние электроны удерживаются сильнее, и металлические (восстановительные) свойства ослабевают, а неметаллические (окислительные) усиливаются.

2. В группе, в главной подгруппе сверху вниз:

1) Относительная атомная масса – увеличивается

2) Число электронов на внешнем уровне – постоянно

3) Заряд ядра – увеличивается

4) Количество энергоуровней – увеличивается

5) Радиус атомов - увеличивается

6) Электроотрицательность – уменьшается.

Следовательно, внешние электроны удерживаются слабее, и металлические (восстановительные) свойства элементов усиливаются, неметаллические (окислительные) - ослабевают.

3. Изменение свойств летучих водородных соединений:

1)в группах главных подгруппах с ростом заряда ядра прочность летучих водородных соединений уменьшается, а кислотные свойства их водных растворов усиливаются (основные свойства уменьшаются);

2)в периодах слева направо кислотные свойства летучих водородных соединений в водных растворах усиливаются (основные уменьшаются), а прочность уменьшается;

3)в группах с ростом заряда ядра в главных подгруппах валентность элемента в летучих водородных соединениях не изменяется, в периодах слева направо уменьшается от IV до I .

4. Изменение свойств высших оксидов и соответствующих им гидроксидов (кислородсодержащие кислоты неметаллов и основания металлов):

1) в периодах слева направо свойства высших оксидов и соответствующих им гидроксидов изменяются от основных через амфотерные к кислотным;

2)кислотные свойства высших оксидов и соответствующих им гидроксидов с ростом заряда ядра в периоде усиливаются, основные уменьшаются, прочность уменьшается;

3)в группах главных подгруппах у высших оксидов и соответствующих им гидроксидов с ростом заряда ядра прочность растёт, кислотные свойства уменьшаются, основные усиливаются;

4)в группах с ростом заряда ядра в главных подгруппах валентность элемента в высших оксидах не изменяется, в периодах слева направо увеличивается от I до VIII .

5. Завершенность внешнего уровня – если на внешнем уровне атома 8 электронов (для водорода и гелия 2 электрона)

6. Металлические свойства – способность атома отдавать электроны до завершения внешнего уровня.

7. Неметаллические свойства - способность атома принимать электроны до завершения внешнего уровня.

8. Электроотрицательность – способность атома в молекуле притягивать к себе электроны

9. Семейства элементов:

Щелочные металлы (1 группа «А») – Li , Na , K , Rb , Cs , Fr

Галогены (7 группа «А») – F , Cl , Br , I

Инертные газы (8 группа «А») – He , Ne , Ar , Xe , Rn

Халькогены (6 группа «А») – O , S , Se , Te , Po

Щелочноземельные металлы (2 группа «А») – Ca , Sr , Ba , Ra

10. Радиус атома – расстояние от ядра атома до внешнего уровня

Задания для закрепления:

Расположенных в таблице горизонтально, и восьми групп, расположенных вертикально.

Период – это горизонтальный ряд элементов, начинающийся (за исключением 1-го периода) щелочным металлом и заканчивающийся инертным (благородным) газом.

1-й период содержит 2 элемента, 2-й и 3-й периоды – по 8 элементов. Первый, второй и третий периоды называются малыми (короткими) периодами.
4-й и 5-й периоды содержат по 18 элементов, 6-й период – 32 элемента, 7-й период содержит элементы с 87-го и далее, вплоть до последнего из известных на настоящее время элементов. Четвертый, пятый, шестой и седьмой периоды называются большими (длинными) периодами.

Группа это вертикальный ряд элементов.

Каждая группапериодической системы состоит из двух подгрупп: главной подгруппы (А) и побочной подгруппы (В). Главная подгруппа содержит элементы малых и больших периодов (металлы и неметаллы). Побочная подгруппа содержит элементы только больших периодов (только металлы).

Например, главную подгруппу I группы составляют элементы литий, натрий, калий, рубидий, цезий и франций, а побочную подгруппу I группы составляют элементы медь, серебро и золото. Главную подгруппу VIII группы образуют инертные газы, а побочную подгруппу – металлы железо, кобальт, никель, рутений, родий, палладий, осмий, иридий, платина, хасий и мейтнерий.

Свойства простых веществ и соединений элементов изменяются монотонно в каждом периоде и скачкообразнона границах периодов. Такой характер изменения свойств составляет смысл периодической зависимости. В периодахслева направо неметаллические свойства элементов монотонно усиливаются, а металлические – ослабевают. Например, во втором периоде: литий – очень активный металл, берилий – металл, образующий амфотерный оксид и соответственно амфотерный гидроксид, В, С, N, О – типичные неметаллы, фтор – самый активный неметалл, неон – инертный газ. Таким образом, на границах периода свойства изменяются скачкообразно: период начинается щелочным металлом, а заканчивается инертным газом.

В периодахслева направо кислотные свойства оксидов элементов и их гидратов усиливаются, а основные – ослабевают. Например, в третьем периоде оксиды натрия и магния – основные оксиды, оксид алюминия – амфотерный, а оксиды кремния, фосфора, серы и хлора – кислотные оксиды. Гидроксид натрия – сильное основание (щелочь), гидроксид магния – слабое нерастворимое основание , гидроксид алюминия – нерастворимый амфотерный гидроксид, кремниевая кислота – очень слабая кислота, фосфорная – кислота средней силы, серная – сильная кислота, хлорная – самая сильная кислота из этого ряда.

В главных подгруппахсверху вниз металлические свойства элементов усиливаются, а неметаллические – ослабевают. Например, в подгруппе 4А: углерод и кремний – неметаллы, германий, олово, свинец – металлы, причем олово, свинец – более типичные металлы, чем германий. В подгруппе 1А все элементы – металлы, но по химическим свойствам также можно проследить усиление металлических свойств от лития к цезию и францию. В результате металлические свойства в наибольшей степени выражены у цезия и франция, а неметаллические – у фтора.

В главных подгруппахсверху вниз основные свойства оксидов и их гидратов усиливаются, а кислотные – ослабевают. Например, в подгруппе 3А: В 2 О 3 – кислотный оксид, а Т1 2 О 3 – основный. Их гидраты: Н 3 ВО 3 – кислота, а Т1(ОН) 3 – основание.


  1. Строение атома. Современная формулировка Периодического
    закона
Открытие периодического закона стало предпосылкой к созданию в XX в. теории строения атома. В 1911 г. английский физик Э. Резерфорд предложил ядерную модель атома, согласно которой атом состоит из сравнительно небольшого положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и расположенных вокруг ядра электронов, составляющих электронную оболочку атома, которая занимает практически весь его объем. Были определены масса покоя и заряд электрона. Атом в целом электронейтрален, поскольку положительный заряд ядракомпенсируется отрицательным зарядом эквивалентного числа электронов.

Позже, в 1913 г. английский физик Г. Мозли установил, что заряд ядра численно равен порядковому номеру элемента в периодической системе. Таким образом, заряд ядра атома главная характеристика химического элемента. Химический элемент это множество атомов с одинаковым зарядом ядра.

Отсюда следует современная формулировка периодического закона: свойства элементов, а также свойства образуемых ими простых и сложных веществ находятся в периодической зависимости от величины заряда ядер их атомов.

В четырех местах Периодической таблицы элементы «нарушают» строгий порядок расположения по возрастанию атомной массы. Это пары элементов:

18 Ar(39,948) – 19 K (39,098);

27 Co(58,933) – 28 Ni(58,69);

52 Te(127,60) – 53 I(126,904);

90 Th(232,038) – 91 Pa(231,0359).

Во времена Д.И. Менделеева подобные отступления считались недостатками Периодической системы. Теория строения атома расставила все на свои места. В соответствии с величинами заряда ядра эти элементы были размещены Менделеевым в системе правильно. Таким образом, нарушив в этих случаях принцип размещения элементов в порядке возрастания атомных масс и руководствуясь физическими и химическими свойствами элементов, Менделеев фактически использовал более фундаментальную характеристику элемента – его порядковый номер в системе , который оказался равным заряду ядра.

Классическая механика не могла объяснить многие экспериментальные факты, касающиеся поведения электрона в атоме. Так, согласно представлениям классической теории электродинамики система, состоящая из заряда, вращающегося вокруг другого заряда, должна излучать энергию, в результате чего электрон в конце концов упал бы на ядро. Возникла необходимость создания иной теории, описывающей поведение объектов микромира, для описания которых недостаточна классическая механика Ньютона.

Основные законы такой теории были сформулированы в 1923 – 1927 гг. и она получила название квантовой механики.

Квантовая механика базируется на трех основных положениях.


        1. Корпускулярно-волновой дуализм (микрочастицы проявляют одновременно и волновые и материальные свойства, т.е. двойственную природу).
Так, двойственная природа электрона проявляется в том, что он обладает свойствами и частицы, и волны одновременно. Как частица электрон имеет массу и заряд, но движение электронов – это волновой процесс. Например, электронам свойственно явление дифракции (поток электронов огибает препятствие).

  1. Принцип квантования энергии (микрочастицы излучают энергию не постоянно, а дискретно отдельными порциями – квантами).
В 1900 г. М. Планк привлек для их объяснения квантовую гипотезу, согласно которой энергия может излучаться или поглощаться лишь определенными порциями – квантами.

В 1913 г. Н. Бор применил квантовую теорию для объяснения спектра атомарного водорода, предположив, что электроны в атомах могут находиться только на некоторых «дозволенных» орбитах, отвечающих определенным значениям энергии. Бор предположил также, что, находясь на этих орбитах, электрон не излучает энергии. Поэтому, пока электроны в атоме не совершают переходов с одной орбиты на другую, энергия атома остается постоянной. При переходе же электрона с одной орбиты на другую происходит излучение кванта лучистой энергии , величина которого равна разности энергии, соответствующей этим орбитам.


  1. Законы микромира обусловлены статистическим характером. Положение электрона в атоме неопределенно. Это значит, что невозможно одновременно точно определить и скорость электрона, и его координаты в пространстве.
Электрон, который движется с очень большой скоростью, может находиться в любой части пространства вокруг ядра. Согласно представлениям квантовой механики, вероятность пребывания электрона в различных областях пространства неодинакова. Различные моментальные положения электрона образуют так называемое электронное облако снеравномерной плотностью отрицательного заряда (рисунок 1.1.).

Рисунок 1.1 – Электронное облако атома водорода
Форма и размеры электронного облака могут быть разными в зависимости от энергии электрона.

Существует понятие «орбиталь», под которым понимают совокупность положений электрона в атоме.

Каждую орбиталь можно описать соответствующей волновой функцией – атомной орбиталью , зависящей от трех целочисленных параметров, называемых квантовыми числами .


  1. Квантово-механическое описание состояния электрона в атоме
1. Главное квантовое число (п) характеризует энергетический уровень и принимает целочисленные значения от 1 до ∞, которые соответствуют номеру энергетического уровня.

Иногда используют буквенные обозначения главного квантового числа, т.е. каждое численное значение п обозначают соответствующей буквой латинского алфавита:

Главное квантовое число определяет энергию электрона и размер электронного облака, т.е. среднее расстояние электрона от ядра. Чем больше п, тем выше энергия электрона, следовательно, минимальная энергия соответствует первому уровню (п = 1).

В Периодической системе элементов максимальному значению главного квантового числа соответствует номер периода.

2. Орбитальное или побочное квантовое число ( l ) характеризует энергетический подуровень и определяет форму электронного облака; принимает целочисленные значения от 0 до (п –1). Его значения обычно обозначаются буквами:


l =

0

1

2

3

s

p

d

f

Число возможных значений l соответствует числу возможных подуровней на данном уровне, равному номеру уровня (п).


При

n =1

l =0

(1 значение)

n =2

l =0, 1

(2 значения)

n =3

l =0, 1, 2

(3 значения)

n =4

l =0, 1, 2, 3

(4 значения)

Энергия электронов на разных подуровнях одного уровня изменяется в зависимости от l следующим образом: каждому значению l соответствует определенная форма электронного облака: s – сфера, р –объемная восьмерка, d и f – объемная четырехлепестковая розетка или более сложная форма (рисунок 1.2).

















Рисунок 1.2, лист 1 – Электронные облака s -, p - и d -атомных орбиталей





















Рисунок 1.2, лист 2 – Электронные облака s -, p - и d -атомных орбиталей
3. Магнитное квантовое число ( m l ) характеризует ориентацию электронного облака в магнитном поле; принимает целочисленные значения от –l до + l :
m l = –l , ..., 0, ..., + l (всего 2 l + 1 значений).

При l = 0 (s-электрон) m l может принимать только одно значение (для сферического электронного облака возможна только одна ориентация в пространстве).

При l = 1 (р -электрон) т 1 может принимать 3 значения (возможны три ориентации электронного облака в пространстве).

При l = 2 (d -электрон) возможны 5 значений m l ; (разные ориентации в пространстве при несколько изменяющейся форме электронного облака).

При l = 3 (f -электрон) возможны 7 значенийm l (ориентация и форма электронных облаков не сильно отличается от той , что наблюдается у d -электронов).

Электроны, имеющие одинаковые значения п, l и m l , находятся на одной орбитали. Таким образом, орбиталь это состояние электрона, характеризующееся определенным набором трех квантовых чисел: п, l и m l , определяющих размер, форму и ориентацию электронного облака. Число значений, которое может принимать m l , при данном значении l , равно числу орбиталей на данном подуровне.

4. Спиновое квантовое число (т s ) характеризует собственный момент количества движения (спин) электрона (не связанный с движением вокруг ядра), который в виде нестрогой модели можно считать соответствующим направлению вращения электрона вокруг своей оси. Может принимать два значения: – 1 / 2 и + 1 / 2 , соответствующие двум противоположным направлениям магнитного момента.

Электроны, имеющие одинаковые значения главного, орбитального и магнитного квантовых чисел и отличающиеся только значениями спинового квантового числа, находятся на одной орбитали и образуют одно общее электронное облако. Такие два электрона, имеющие противоположные спины и находящиеся на одной орбитали, называют спаренными. Один электрон на орбитали является неспаренным.

Таким образом, состояние электрона в атоме определяется набором значений четырех квантовых чисел.
Лекция 2

Вопросы


  1. Формирование электронной оболочки атома.

  2. Электронные конфигурации атомов

  3. Электронная конфигурация атома и периодическая система

  1. Формирование электронной оболочки атома
Последовательность заполнения электронами подуровней в многоэлектронных атомах определяется принципом минимума энергии, принципом Паули и правилом Хунда.

Принцип минимума энергии : заполнение электронами атомных орбиталей ( AO ) происходит в порядке возрастания их энергии. В устойчивом состоянии электроны находятся на наиболее низких энергетических уровнях и подуровнях.

Это означает, что каждый новый электрон попадает в атоме на самый низкий (по энергии) свободный подуровень.

Охарактеризуем уровни, подуровни и орбитали по запасу энергии электронов. Для многоэлектронного атома энергия орбиталей на уровнях и подуровнях изменяется следующим образом:
1s s р s р s d р s d р s d (4f ) р s d (5f ) р
Для сложных атомов действует правило (п+ l ) или правило Клечковского : энергия АО возрастает в соответствии с увеличением суммы (п+ l ) главного и орбитального квантовых чисел. При одинаковом значении суммы энергия меньше у АО с меньшим значением главного квантового числа.

Принцип Паули : в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел.

Каждая орбиталь – это энергетическое состояние, которое характеризуется значениями трех квантовых чисел: п, l и m l Эти числа определяют размер, форму и ориентацию орбитали в пространстве. Следовательно, на одной орбитали может быть не более двух электронов и различаться они будут значением четвертого (спинового) квантового числа: т s = + 1 / 2 или – 1 / 2 (таблица 2.1)

Например, для 1s - орбитали существует два набора квантовых чисел:


n

1

1

l

0

0

m l

0

0

m s

+ 1 / 2

– 1 / 2

Следовательно, здесь может находиться только два электрона с различными значениями спинового числа.

Для каждой из трех 2p - орбиталей также возможно только два набора квантовых чисел:


n

2

2

l

1

1

m l

0

0

m s

+ 1 / 2

– 1 / 2

Значит, на р -подуровне может находиться только шесть электронов.

Наибольшее число электронов на энергетическом уровне равно:

где п –номер уровня, или главное квантовое число.

Следовательно, на первом энергетическом уровне может находиться не более двух электронов, на втором – не более 8, на третьем – не более 18, на четвертом – не более 32 (таблица 2.1).
Таблица 2.1 – Формирование электронной оболочки атома


Энергетический уровень n

l

m l

m s

Число электронов

на подуровне

на уровне

1

0 (s )

0

± 1 / 2

2

2

2

0 (s )

0

± 1 / 2

2

8

1 (p )

–1, 0, 1

± 1 / 2

6

3

0 (s )

0

± 1 / 2

2

18

1 (p )

–1, 0, 1

± 1 / 2

6

2 (d )

–2, –1, 0, 1, 2

± 1 / 2

10

4

0 (s )

0

± 1 / 2

2

32

1 (p )

–1, 0, 1

± 1 / 2

6

2 (d )

–2, –1, 0, 1, 2

± 1 / 2

10

3 (f )

–3, –2, –1, 0, 1, 2, 3

± 1 / 2

14

Правило Хунда : при формировании электронного подуровня электроны заполняют максимальное число свободных орбиталей так, чтобы число неспаренных электронов было наибольшим .


  1. Электронные конфигурации атомов
Распределение электронов по различным атомным орбиталям называют электронной конфигурацией атома . Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям .

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронографических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода электронная формула: 1s 1 .

Более полно строение электронных уровней можно описать с помощью электронографических диаграмм, где распределение электронов по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны обозначают стрелками в зависимости от знака спинового квантового числа. Электронографическая диаграмма атома водорода:


1s


Принцип построения электронных конфигураций многоэлектронных атомов состоит в добавлении протонов и электронов к атому водорода. Распределение электронов по энергетическим уровням и подуровням подчиняется рассмотренным ранее правилам.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s -элементы,
р -элементы, d -элементы, f -элементы.

s -орбитали, называются s -элементами. Элементы, в атомах которых последними заполняются
p -орбитали, называются p -элементами. Элементы, в атомах которых последними заполняются d -орбитали, называются d -элементами. Элементы, в атомах которых последними заполняются f -орбитали, называются f -элементами.

В атоме гелия Не (Z = 2) второй электрон занимает l s-орбиталь, его электронная формула: 1s 2 . Электронографическая диаграмма:


1s


Гелием заканчивается первый самый короткий период Периодической системы элементов. Электронную конфигурацию гелия обозначают [Не].

Второй период открывает литий Li (Z = 3), его электронная формула:
[Не] 2s 1 . Электронографическая диаграмма:




2p

2s

После лития следует бериллий Be (Z = 4), в котором дополнительный электрон заселяет 2s -орбиталь. Электронная формула Be: 2s 2



2s

2p

В основном состоянии следующий электрон бора В (Z = 5) занимает
2р -орбиталь, В: ls 2 2s 2 2p 1 ; его электронографическая диаграмма:





2s

2p

Следующие пять элементов имеют электронные конфигурации:

C(Z=6):2s 2 2p 2

N(Z=7):2s 2 2p 3















2s

2p

2s

2p

O(Z=8):2s 2 2p 4

F(Z=9):2s 2 2p 5

















2s

2p

2s

2p

Ne(Z=10):2s 2 2p 6









2s

2p

Приведенные электронные конфигурации определяются правилом Хунда.

Первый и второй энергетические уровни неона полностью заполнены. Обозначим его электронную конфигурацию и будем использовать в дальнейшем для краткости записи электронных формул атомов элементов.

Натрий Na (Z = 11) и Mg (Z = 12) открывают третий период. Внешние электроны занимают 3s -орбиталь:


Na (Z=11): 3s 1



3s

3p

3d

Mg (Z=12): 3s 2



3s

3p

3d

Затем, начиная с алюминия (Z = 13), заполняется 3p -подуровень. Третий период заканчивается аргоном Ar (Z= 18):

Al (Z=13): 3s 2 3p 1





3s

3p

3d



Ar (Z=18): 3s 2 3p 6









3s

3p

3d

Элементы третьего периода отличаются от элементов второго тем, что у них имеются свободные 3d -орбитали, которые могут участвовать в образовании химической связи. Это объясняет проявляемые элементами валентные состояния.

В четвертом периоде, в соответствии с правилом (п + l ), у калия К (Z = 19) и кальция Са (Z = 20) электроны занимают 4s –подуровень, а не 3d .Начиная со скандия Sc (Z = 21) и кончая цинком Zn (Z = 30), происходит заполнение
3d -подуровня:
Sc: 4s 2 3d 1 → Zn: 4s 2 3d 10
Электронные формулы d-элементов можно представить в ином виде: подуровни перечисляются в порядке возрастания главного квантового числа, а при постоянном п – в порядке увеличения орбитального квантового числа. Например, для Zn такая запись будет выглядеть так: 3d 10 4s 2 . Обе эти записи эквивалентны, но приведенные ранее электронная формула цинка правильно отражает порядок заполнения подуровней.

В ряду 3d -элементов у хрома Cr (Z = 24) наблюдается отклонение от правила (п + l ). В соответствии с этим правилом электронная конфигурация Сг должна выглядеть так: [Аг] 3d 4 4s 2 . Установлено, что его реальная конфигурация –
3d 5 4s 1 . Иногда этот эффект называют «провалом» электрона.

Отклонения от правила (п + l ) наблюдаются и у других элементов (таблица 2.2). Это связано с тем, что с увеличением главного квантового числа различия между энергиями подуровней уменьшаются.

Далее происходит заполнение 4р -подуровня (Ga – Кг). В четвертом периоде содержится всего 18 элементов. Аналогично происходит заполнение 5s -, 4d
5р -подуровней у 18-ти элементов пятого периода. Отметим, что энергии 5s
4d -подуровней очень близки, и электрон с 5s -подуровня может легко переходить на 4d -подуровень. На 5s -подуровне у Nb, Mo, Tc, Ru, Rh, Ag находится только один электрон. В основном состоянии 5s -подуровень Pd не заполнен. Наблюдается «провал» двух электронов.
Таблица 2.2 – Электронная конфигурация элементов с отклонением
от правила Клечковского


1

1

3

Cr (Z=24)

4s 2 3d 4

4s 1 3d 5

Cu (Z=29)

4s 2 3d 9

4s 1 3d 10

Nb (Z=41)

5s 2 4d 3

5s 1 4d 4

Mo (Z=42)

5s 2 4d 4

5s 1 4d 5

Tc (Z=43)

5s 2 4d 5

5s 1 4d 6

Ru (Z=44)

5s 2 4d 6

5s 1 4d 7

Rh (Z=45)

5s 2 4d 7

5s 1 4d 8

Pd (Z=46)

5s 2 4d 8

5s 0 4d 10

Ag (Z=47)

5s 2 4d 9

5s 1 4d 10

La (Z=57)

6s 2 4f 1 5d 0

6s 2 4f 0 5d 1

Ce (Z=58)

6s 2 4f 2 5d 0

6s 2 4f 1 5d 1

Gd (Z=64)

6s 2 4f 8 5d 0

6s 2 4f 7 5d 1

Ir (Z=77)

6s 2 4f 14 5d 7

6s 0 4f 14 5d 9

Pt (Z=78)

6s 2 4f 14 5d 8

6s 1 4f 14 5d 9

Au (Z=79)

6s 2 4f 14 5d 9

6s 1 4f 14 5d 10

В шестом периоде после заполнения 6s-подуровня у цезия Cs (Z = 55) и бария Ва (Z = 56) следующий электрон, согласно правилу (п + l ), должен занять
4f -подуровень. Однако у лантана La (Z = 57) электрон поступает на 5d -подуро-вень. Заполненный наполовину (4f 7) 4f -подуровень обладает повышенной устойчивостью, поэтому у гадолиния Gd (Z = 64), следующего за европием Eu (Z = 63), на 4f -подуровне сохраняется прежнее количество электронов (7), а новый электрон поступает на 5d -подуровень, нарушая правило (п + l ). У тербия Tb (Z = 65) очередной электрон занимает 4f -подуровень и происходит переход электрона с
5d -подуровня (конфигурация 4f 9 6s 2). Заполнение 4f -подуровня заканчивается у иттербия Yb (Z = 70). Следующий электрон атома лютеция Lu занимает
5d -подуровень. Его электронная конфигурация отличается от конфигурации атома лантана только полностью заполненным 4f -подуровнем.

В настоящее время в Периодической системе элементов Д.И. Менделеева под скандием Sc и иттрием Y располагают иногда лютеций (а не лантан) как первый d -элемент, а все 14 элементов перед ним, включая лантан, выносят в особую группу лантаноидов за пределы Периодической системы элементов.

Химические свойства элементов определяются, главным образом, структурой внешних электронных уровней. Изменение числа электронов на третьем снаружи 4f -подуровне слабо отражается на химических свойствах элементов. Поэтому все 4f -элементы схожи по своим свойствам. Затем в шестом периоде происходит заполнение 5d -подуровня (Hf – Hg) и 6р -подуровня (Tl – Rn).

В седьмом периоде 7s -подуровень заполняется у франция Fr (Z = 87) и радия Ra (Z = 88). У актиния наблюдается отклонение от правила (п + l ), и очередной электрон заселяет 6d -подуровень, а не 5f . Далее следует группа элементов (Th – No) с заполняющимся 5f -подуровнем, которые образуют семейство актиноидов .

У лоуренсия Lr (Z = 103) новый электрон поступает на 6d -подуровень. Этот элемент иногда помещают в Периодической системе под лютецием. Седьмой период не завершен. Элементы, начиная с 104, неустойчивы и их свойства мало известны. Таким образом, с ростом заряда ядра периодически повторяются сходные электронные структуры внешних уровней. В связи с этим следует ожидать и периодического изменения различных свойств элементов.


  1. Электронная конфигурация атома и периодическая система
Структура электронной оболочки атома и положение элемента в периодической системе связаны между собой. Зная положение элемента в периодической системе, можно определить структуру электронной оболочки атома любого элемента.

Порядковый номер элемента в периодической системе показывает заряд ядра его атома и число электронов в атоме.

Номер периода соответствует числу энергетических уровней в электронной оболочке атомов всех элементов данного периода. При этом номер периода совпадает со значением главного квантового числа внешнего энергетического уровня.

Номер группы соответствует, как правило, числу валентных электронов в атомах элементов данной группы.

Валентные электроны – это электроны последних энергетических уровней. Валентные электроны имеют максимальную энергию и участвуют в образовании химической связи между атомами в молекулах.

В атомах элементов главных подгрупп (А) все валентные электроны находятся на последнемэнергетическом уровне и их число равно номеру группы. В атомах элементов побочных подгрупп (В) на последнем энергетическом уровне находится не более двухэлектронов, остальные валентные электроны находятся на предпоследнемэнергетическом уровне. Общее число валентных электронов также, как правило, равно номеру группы.

Изложенное показывает, что по мере роста заряда ядра происходит закономерная периодическая повторяемость сходных электронных структур элементов, а следовательно, и повторяемость их свойств, зависящих от строения электронной оболочки атомов.

Таким образом, в периодической системе с возрастанием порядкового номера элемента свойства атомов элементов, а также свойства простых и сложных веществ, образованных этими элементами , периодически повторяются, так как периодически повторяются аналогичные конфигурации валентных электронов в атомах.В этом состоит физический смысл периодического закона.

Тема: «Периодический закон и периодическая система химических элементов Д.И.Менделеева »

Цель урока : а) познавательный аспект:

    Проконтролировать степень усвоения ЗУН, сформированных на предыдущем уроке: составление схем строения атомов, составление графических и структурных формул элементов.

    Обеспечить усвоение следующих основных знаний, входящих в содержание темы урока:

Определение понятий: «периодичность», «периодический закон»;

Характеристика структуры периодической системы;

Значение периодического закона.

3.Сформировать следующие специальные умения:

а) образовательный аспект:

Объяснение причины периодического изменения свойств химических элементов;

Установление физического смысла порядкового номера элемента, номера группы, номера периода, периодического закона;

Выявление закономерности изменения металлических и неметаллических свойств элементов в периодах и в группах

б) развивающий аспект:

Обеспечить, используя задания, требующие выполнения мыслительных операций различного уровня сложности, формирование самостоятельности суждений учащихся, интеллектуальных и учебно-коммуникативных умений и навыков:

Развитие речи (обогащение и усложнение словарного запаса, усложнение смысловой функции речи);

Формирование внимания, техники письма, чтения;

Формирование мыслительных операций (анализ и синтез, выделение главного и существенного, абстрагирование и конкретизация, сравнение и различение).

в) воспитывающий аспект:

Содействовать в ходе урока формированию научного мировоззрения учащихся:

Убеждённости в материальности мира путём раскрытия природы изучаемых явлений;

Понимание объективного характера изучаемого закона, возможности познания природы и использования этих знаний в научной и практической деятельности;

Установление причинно-следственных связей: состав - строение- свойства.

2.Осуществлять нравственное воспитание (патриотизм, интернационализм, товарищество, этические нормы поведения).

3.Формировать уважение к науке как к части культуры общества.

Ход урока:

    Организационный этап.

    Актуализация опорных знаний

(критерии оценивания – за каждый правильный ответ учащийся ставит себе «+» на полях в тетради)

1. Разминка . Знаки химических элементов (индивидуальная работа) /Слайд 1/

2. Укажите число протонов, нейтронов и электронов для следующих атомов: вариант 1 – азот, вариант 2 – кислород, вариант 3 – бор, вариант 4 – фтор.

3. Написать для этих же элементов электронные и структурные формулы.

4. Написать химические реакции и определить тип реакции (работа в микрогруппах)

Задание по карточкам. Метод – групповой.

Вариант 1

Вариант 2

Вариант 3

Вариант 4

К + Н 2 О =

СаО + НСI =

Zn + НСI =

Сu (ОН) 2 =

Na + Cl 2 =

BaO + H 2 SO 4 =

К + НNО 3 =

Са(ОН) 2 =

Ca + H 2 =

BaO + HCl =

Fe + H 2 SO 4 =

CaCO 3 =

Mg + Cl 2 =

СаO +H 2 SO 4 =

Na + H 2 SO 4

Fe(OH) 2 =

    Формирование новых знаний

Тема: «Периодический закон и периодическая система химических элементов Д.И.Менделеева» /Слайд 2/

(урок обобщения, повторения и систематизации материала)

Этап подготовки учащихся к активному и сознательному усвоению нового материала (сообщение темы урока, формулирование вместе с учащимися целей):

Какие цели сегодня на уроке мы будем преследовать? /Слайд 3/

а) усвоить новое понятие «Периодический закон»;

б) изучить структуру периодической системы;

в) установить связь периодического закона и периодической системы со строением атома;

г) оценить значение периодического закона.

Мотивация. Задачи урока: организация дальнейшей деятельности учащихся по изучению и усвоению нового материала (работа в составе четырёх групп с познавательными текстами с последующим комментированием материала по схеме-конспекту)

Алгоритм работы: /Слайд 4/

Соотнести информацию текста с соответствующим блоком опорного конспекта;

Ответить на вопросы, выполнить тестовые задания, обсудить ответы в группе;

Выбрать комментатора.

    Новый материал

Ответы 1 группы /Слайд 5/

Учебный текст 1 группы: «Периодический закон»

Формируемые понятия: «периодичность», «периодический закон».

Задание: Дайте формулировку периодического закона, объясните понятие периодичность.

Вопросы: 1) Какое свойство элемента Д.И.Менделеев положил в основу классификации ХЭ? 2) Объясните выражение «Свойства элементов изменяются периодически»? Какие свойства элементов изменяются периодически?

Вопросы для вывода: а) Можно ли сказать, что периодический закон существует в природе реально? б) В чём заслуга Д.И. Менделеева?

Учебный текст 2 группы: «Периодическая система химических элементов Д. И. Менделеева» /Слайд 6/

Формируемые понятия: «Периодическая система химических элементов Д. И. Менделеева», «периоды», «группы», «главные и побочные подгруппы».

Задание: Объясните выражение «периодическая система – естественная классификация химических элементов, а таблица – графическое изображение периодического закона»?

Вопросы для вывода: Периодическая система и периодическая таблица - это одинаковые понятия?

Тесты 2 группы: /Слайд 7/

1. в 2. в 3. а 4. в 5. в 6. а

Учебный текст 3группы: «Периодический закон и периодическая система в свете учения о строении атома» /Слайд 8/

Формируемые понятия: «Физический смысл периодического закона», «№ периода», « № группы».

Задание: Дайте современную формулировку периодического закона. Почему заряд ядра (порядковый номер) является главной характеристикой элемента?

Вопросы для вывода: Почему наблюдается периодическая зависимость свойств элементов и образованных ими веществ от заряда ядра атома?

Тесты 3 группы: /Слайд 9/

1. а 2. в 3. г 4. в 5. а

Учебный текст 4 группы: « Значение периодического закона» /Слайд10/

Формируемые понятия: «Материальность, единство и познаваемость мира, взаимосвязь явлений».

Задание: Как вы понимаете выражение: «Закон, являясь инструментом познания, выполняет три функции: обобщающую, объясняющую, прогностическую»?

Вопросы для вывода: Какие факты доказывают научность открытого Д.И.Менделеевым закона?

    Этап закрепления (Ответы на вопросы и тестовые задания, содержащиеся в учебных текстах)

Диагностическая работа /Слайд11/

1.Выберите схемы химических элементов:

1В. Второго периода 2В. Третьего периода

а)2е,8е б)2е,8е,5е в) 1е г)2е,8е,8е,1е

2.Выберите схемы элементов:

1В. Третьей группы 2В. Шестой группы

а)2 е, 8 е,6 еб)1s 2 2s 2 2p 6 3s 2 3p 1 в)1s 2 2s 1 г)1s 2 2s 2 2p 6

3.Наиболее ярко 1В. металлические 2В. неметаллические свойства выражены у: а)1s 2 2s 2 б)1s 2 2s 1 в) 1s 2 2s 2 2p 1 г) 1s 2 2s 2 2p 2

4.Причина 1В. Ослабление металлических свойств в периодах

2В. Усиления металлических свойств в группах:

а) увеличение числа ЭУ б) увеличение числа электронов на ВЭУ в) увеличение заряда ядра г) увеличение массы атома

Ответы:

1В 2В

1. а 1. б

2. б 2. а

3. б 3. г

4. б 4. а

    Этап информирования учащихся о домашнем задании

    Выводы по уроку: /Слайд 12/

ПЗ существует и действует в природе реально и независимо от сознания человека. Человек лишь открывает закон, т. е. познаёт связь явлений и выражает её в формулировке: « Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра их атома»

Периодическая система - естественная классификация химических элементов. Периодическая таблица - графическое изображение периодического закона

Свойства элементов изменяются периодически, т.к. периодически изменяется число электронов на внешнем уровне их атомов

ПЗ - это не гипотеза, а научная теория, т.к. выполняет три основные функции: обобщающую, объясняющую и прогностическую

(ПСХЭ Д.И.Менделеева – единое целое, включающее в себя все химические элементы, т.к. у них общие черты строения атомов, общие свойства; ПЗ показывает взаимосвязь состава- строения- свойств; ПЗ позволяет предсказывать существование и свойства ещё неоткрытых элементов)

7. Рефлексия: /Слайд 13/

Продолжите фразу:

Сегодня на уроке я узнал ….

Теперь я могу ….

Было интересно ….

Знания, полученные сегодня на уроке, пригодятся …

Схема – конспект

Блок-1

ПЗ Д.И.МЕНДЕЛЕЕВА

Пришёл! 1.Д.И.Менделеев сравнил между собой все химические элементы.

2.За основу сравнения взял атомные массы.

Увидел! Повторение сходных элементов металлов и неметаллов через равные промежутки.

Победил! 1. Классифицировал все химические элементы, создав периодическую систему.

2.Сформулировал периодический закон: «Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра их атома»

Блок 2 Как формула, как график трудовой

Строй менделеевской системы

Вокруг тебя творится мир

Входи в него, вдыхай, руками трогай!

С.Щипачёв

Периоды

(Горизонтальные ряды)

Малые(1,2,3) 1- 2 элемента, 2,3- по 8элементов,

Большие(4,5,6,7);. 4,5-по 18 элементов,

6-32 элемента,

7 незаконченный.

Слева направо металлические свойства убывают, а неметаллические усиливаются.

Группы

Главная Побочная

(элементы и малых и больших периодов)

(элементы только больших периодов)

Сверху вниз металлические свойства усиливаются, а не- металлические ослабевают.

труктура

Блок 3 ПЗ и ПСХЭ в свете учения о строении атома

Физический смысл:

Порядковый № = заряду ядра атома(Z )

периода = числу ЭУ (энергетических уровней)

группы = числу электронов на ВЭУ (внешнем энергетическом уровне)

Период: Z , число электронов на ВЭУ увеличивается, число ЭУ =const

Радиус атома уменьшается, притяжение электронов к ядру растёт

Группа:Z , число ЭУ, радиус атома увеличиваются, число электронов на ВЭУ=const притяжение электронов к ядру уменьшается

Металличность- отдача электронов

Неметалличность- присоединение

Блок 4 Значение ПЗ

ПЗ позволил: 1. Исправить атомные массы

2.Предсказать существование и свойства ещё неоткрытых элементов

ПЗ послужил толчком для развития атомной физики, геохимии, биохимии, химии космоса…

ПЗ подтвердил законы природы:

Единство и материальность мира

Познаваемость мира

Взаимосвязь явлений

«Мир сложен. Он полон событий, сомнений

И тайн бесконечных и смелых догадок.

Как чудо природы рождается гений

И в хаосе этом наводит порядок».

Учебный текст 1 «Периодический закон Д.И.Менделеева»

- Формируемые понятия : «периодичность», «периодический закон».

- Задание : Дайте формулировку периодического закона, объясните понятие периодичность.

- Вопросы: 1) Какое свойство элемента Д.И.Менделеев положил в основу классификации ХЭ? 2) Объясните выражение «Свойства элементов изменяются периодически»? какие свойства элементов изменяются периодически?

- Вопросы для вывода : а) Можно ли сказать, что периодический закон существует в природе реально? б) В чём заслуга Д.И. Менделеева?

    К середине 19века било открыто более 60 химических элементов, У большинства которых были изучены физические и химические свойства. Открытие новых элементов и изучение свойств элементов и их соединений позволили, с одной стороны, накопить богатый фактический материал, а с другой – выявили необходимость его систематизации

Ни одна из попыток классификации не выявила основной закономерности в их расположении и, следовательно, не могла привести к созданию естественной системы, охватывающей все элементы и отражающей природу их сходства и различия.

    За основу сравнения всех химических элементов Д.И.Менделеев взял фундаментальную количественную характеристику элемента- атомную массу.

Д.И.Менделеев расположил все известные элементы в порядке возрастания атомных масс:Li – Be – В – C – N – O – F – Ne – Na – Mg – Al – Si – P – S – Cl

И обнаружил, что в полученном им естественном ряду элементов сходные элементы(Li – Na - щелочные металлы; F - Cl – типичные неметаллы «галогены») повторяются через правильные интервалы. Эта закономерность была названа Д.И.Менделеевым законом периодичности и сформулирована следующим образом:

Свойства простых тел, а также форма и свойства соединений химических элементов находятся в периодической зависимости от величины атомных масс элементов.

    Д.И.Менделеев разбил естественный ряд на отрезки, которые начинались щелочным металлом, отрезки расположил друг под другом и получил систему химических элементов

Li – Be – В – C – N – O – F – Ne

Na – Mg – Al – Si – P – S – Cl

Это расположение отражало периодичность изменения свойств химических элементов.

Учебный текст 2 « Периодическая система химических элементов Д.И. Менделеева»

- Формируемые понятия : «Периодическая система химических элементов Д. И. Менделеева», «периоды», «группы», «главные и побочные подгруппы»

- Задание : Объясните выражение «периодическая система – естественная классификация химических элементов, а таблица – графическое изображение периодического закона»?

- Вопросы для вывода : Периодическая система и периодическая таблица - это одинаковые понятия?

1.В результате сопоставления свойств и атомных масс элементов Д.И. Менделеев пришёл к открытию ПЗ и на его основе - ПСХЭ, т.е. ПСХЭ реально существует в природе, является естественной классификацией химических элементов.

Таблица, которой мы пользуемся - это графическое изображение ПЗ. В настоящее время наиболее распространёнными формами таблицы являются короткая и длинная. Короткая форма таблицы была разработана Д.И. Менделеевым в 1870 году, её называют классической. (Первый вариант, предложенный в 1869 году, имел длинную форму т. е. в ней периоды располагались одной строкой). В школе изучают короткую форму таблицы. Какова же её структура?

2. Периоды - горизонтальные ряды элементов, в пределах которых свойства элементов изменяются последовательно. Периоды делятся на малые (1период-2 элемента; 2,3 периоды - по 8 элементов) и большие (4,5 периоды- по 18 элементов; 6 период- 32 элемента; 7 период- незаконченный)

Во всех периодах с увеличением порядкового номера элемента (СЛЕВА НАПРАВО) металлические свойства убывают, а неметаллические усиливаются.

3.Группы - это вертикальные столбцы элементов, их восемь.

Каждая группа состоит из 2-х подгрупп: главной и побочной.

Главная подгруппа включает элементы и малых и больших периодов.

Побочная подгруппа включает элементы только больших периодов.

Например:1группа главная подгруппа:H , Li , Na , K , Rb , Cs , Fr ; побочная подгруппа- Cu , Ag , Au .

В подгруппу объединены элементы со сходными свойствами: сверху вниз металлические свойства элементов усиливаются, а неметаллические ослабевают. Пользуясь ПСХЭ можно дать сравнительную характеристику свойств любого элемента.

Тесты : 1. Элемент №20 находится: а)5п, 4 гр., гл. подгр. б) 4п, 5 гр., гл. подгр. в) 4п, 2гр., гл. подгр. г) 2п, 4 гр., гл. подгр.)

2. В 3 группе гл. подгруппе находится: а)Na б) Mg в)Al г) C

3. Наиболее ярко металлические свойства выражены у: а)Na б) Mg в)Al

4. Наиболее ярко металлические свойства выражены у: а) Li , б)Na , в)K

5. Наиболее ярко неметаллические свойства выражены у: а)N б)O в)F

6. Наиболее ярко неметаллические свойства выражены у: а)C б)Si в)Ge

Учебный текст 3 «Периодический закон и периодическая система в свете учения о строении атома»

- Формируемые понятия : «Физический смысл периодического закона», «№ периода», « № группы».

- Задание : Дайте современную формулировку периодического закона. Почему заряд ядра (порядковый номер) является главной характеристикой элемента?

- Вопросы для вывода : Почему наблюдается периодическая зависимость свойств элементов и образованных ими веществ от заряда ядра атома?

    После создания ПСХЭ перед учёными встал ряд вопросов. Сколько элементов должна содержать ПСХЭ? Почему свойства элементов изменяются периодически, ведь атомная масса изменяется непрерывно? Почему металлические свойства элементов с увеличением атомной массы в периоде ослабевают, а в группе усиливаются? Данные о строении атома позволили выяснить физический смысл ПЗ и ответить на многие вопросы. Сопоставление свойств элемента и строения его атома приводит к выводу: главной характеристикой элемента является его порядковый номер т.к. он равен заряду ядра атома. Заряд ядра определяет число электронов в атоме, которые определённым образом располагаются вокруг ядра, характер распределения электронов вокруг ядра определяет химические свойства атомов. Современная формулировка ПЗ:

Свойства элементов, а также их соединений находятся в периодической зависимости от заряда ядра атома.

    В пределах периода происходит постепенное накопление электронов в наружном слое от 1 до 8, поэтому происходит плавная смена металлических свойств элемента неметаллическими. Число ЭУ остаётся неизменным и совпадает с № периода.

    В пределах группы главной подгруппы число электронов на ВЭУ остаётся неизменным, равным № группы. Меняется же число ЭУ, следовательно, растёт радиус атома, притяжение электронов к ядру уменьшается, что объясняет рост сверху вниз металлических и снижение неметаллических свойств элементов.

    Свойства элементов периодически повторяются, т.к. с возрастанием заряда ядра атома периодически повторяется число электронов на ВЭУ атома элемента (физический смысл ПЗ). В большинстве случаев с возрастанием заряда ядра атомов элементов увеличиваются и их относительные атомные массы. Это обстоятельство и позволило Д.И.Менделееву открыть ПЗ задолго до открытия строения атома.

Тесты: 1Выберите название элемента, у которого на ВЭУ 8 электронов:

а) неон, б) фтор, в) бор, г) кислород

2.Четыре ЭУ содержит электронная оболочка атома:

а) кремния, б) серебра, в) калия г) бериллия

3. Электронная схема - Х) 2) 5 соответствует:

а) бору, б) серебру, в) хлору, г) азоту

4.Дополните формулу 1s 2 2s 2 …3s 1 , выберите название химического элемента, которому она принадлежит: а)алюминий, б)литий, в)натрий, г)азот

5. Дополните формулу - Х) 2)…) 3 , выберите название химического элемента, которому она принадлежит: : а)алюминий, б)литий, в)натрий, г)азот

Учебный текст 4. «Значение периодического закона»

- Формируемые понятия : «Материальность, единство и познаваемость мира, взаимосвязь явлений».

- Задание: Как вы понимаете выражение: «Закон, являясь инструментом познания, выполняет три функции: обобщающую, объясняющую, прогностическую»?

- Вопросы для вывода : Какие факты доказывают научность открытого Д.И.Менделеевым закона?

Задание : оценивая значение открытия Д.И.Менделеева Ф.Энгельс писал: Менделеев совершил научный подвиг, который смело можно поставить рядом с открытием Леверье, вычислившего орбиту неизвестный планеты Нептуна. В чем научный подвиг Д.И.Менделеева?

1)Казалось всё просто: написать символы химических элементов, их атомные массы; расположить карточки в порядке возрастания атомных масс. НО, давайте представим середину 19 века. Что знали современники Д.И.Менделеева? 63 элемента. Некоторые из них не были хорошо очищены от примесей, а это вело к искажению атомных масс, свойств элементов. В таблице было много пустых клеток. Чтобы не нарушать периодичность, Д.И.Менделеев вынужден был исправлять атомные массы некоторых элементов (так масса бериллия считалась 13,5, металл бериллий попадал между двумя неметаллами углеродом и азотом. Менделеев исправляет массу бериллия на среднюю и ставит между литием и бором (7+11):2=9). Последующие исследования подтвердили это. А тогда это был смелый шаг. Кроме того ученый вынужден был допустить 3 перестановки: Элемент№18 аргон имеет массу 40, а элемент№19 калий – 39(№27 и №28; №52 и №53). Это было воспринято большинством ученых, как научное легкомыслие, необоснованная дерзость.

2)Д.И.Менделеев делает еще один смелый шаг: он подробно описывает свойство еще никому не известных элементов. Дальнейшее развитие экспериментальной химии убедительно подтвердило менделеевские прогнозы. Каково же было удивление и восхищение ученых разных стран, когда открыв новый элемент они обнаруживали точное совпадение его свойств с прогнозами Д.И.Менделеева. Периодическая система химических элементов сделалась компасом в исследованиях ученых. Опираясь на нее, они стали открывать новые химические элементы, создавать новые вещества с заранее предсказанными свойствами. С периодическим законом связан прогресс не только в науке(взаимопревращение элементов, поиск путей освобождения ядерной энергии, получения изотопов, развитие физики, геохимии, биохимии, химии космоса), но и в технике: ПЗ открывает закон распределения металлов в земной коре, помогая поиском полезных ископаемых. Металлурги нашли связь ПСХЭ с ролью и поведение элементов в специальных видах стали. Таким образом, границы действия закона обширны: они охватывают химические элементы Вселенной, и образуемые ими простые и сложные вещества. При жизни Д.И.Менделеева ПЗ опирался на атомно – молекулярное учение, сегодня - на электронную теорию строения атома, продолжая жить и развиваться.

Разработка плана-конспекта урока «Периодический закон и периодическая система химических элементов Д.И.Менделеева»

Учитель: Потокина Нина Николаевна

МОУ СОШ N47 г. Тверь

Тема: «Периодический закон и периодическая система химических элементов Д.И.Менделеева »

Цель урока: а) познавательный аспект:

    Проконтролировать степень усвоения ЗУН, сформированных на предыдущем уроке: составление схем строения атомов, определение понятий: «элемент-металл», «элемент-неметалл»

    Обеспечить усвоение следующих основных знаний, входящих в содержание темы урока:

Определение понятий: «периодичность», «периодический закон»

Характеристика структуры периодической системы

Значение периодического закона

3.Сформировать следующие специальные умения:

Объяснение причины периодического изменения свойств химических элементов

Установление физического смысла порядкового номера элемента, номера группы, номера периода, периодического закона.

Выявление закономерности изменения металлических и неметаллических свойств элементов в периодах и в группах

б) развивающий аспект:

Обеспечить, используя задания, требующие выполнения мыслительных операций различного уровня сложности, формирование самостоятельности суждений учащихся, интеллектуальных и учебно-коммуникативных умений и навыков:

Развитие речи (обогащение и усложнение словарного запаса, усложнение смысловой функции речи)

Формирование внимания, техники письма, чтения

Формирование мыслительных операций(анализ и синтез, выделение главного и существенного, абстрагирование и конкретизация, сравнение и различение)

в) воспитывающий аспект:

1.Содействовать в ходе урока формированию научного мировоззрения учащихся:

Убеждённости в материальности мира путём раскрытия природы изучаемых явлений

Понимание объективного характера изучаемого закона, возможности познания природы и использования этих знаний в научной и практической деятельности

Установление причинно-следственных связей: состав- строение- свойства

2.Осуществлять нравственное воспитание (патриотизм,интернационализм, товарищество, этические нормы поведения)

3.Формировать уважение к науке как к части культуры общества.

Мотивация: показ значимости новых знаний

Для развития науки

В жизненно-познавательном опыте

В процессе обучения (наличие базовых знаний о положении элемента в ПСХЭ Д.И. Менделеева и строении его атома обеспечивает усвоение материала последующих тем; позволяет устанавливать причинни- следственные связи)

Ход урока

    Организационный этап.

    Этап проверки домашнего задания(состав и строение атомов, металл, неметалл)

    Этап подготовки учащихся к активному и сознательному усвоению нового материала (сообщение темы урока, формулирование вместе с учащимися целей: а) усвоить новое понятие «периодический закон» б)изучить структуру периодической системы в)установить связь периодического закона ипериодической системы со строением атома г)оценить значение периодического закона Мотивация Задачи урока: организация дальнейшей деятельности учащихся по изучению и усвоению нового материала (работа в составе четырёх групп с познавательными текстами с последующим комментированием материала по схеме-конспекту) Алгоритм работы:

    Новый материал

Учебный текст №1 «Периодический закон»

Формируемые понятия: «периодичность», «периодический закон» Вопросы для вывода: а) Можно ли сказать, что периодический закон существует в природе реально?

б) В чём заслуга Д.И. Менделеева?

Учебный текст №2 «Периодическая система химических элементов Д. И. Менделеева»

Формируемые понятия: «Периодическая система химических элементов Д. И. Менделеева», «периоды», «группы», «главные и побочные подгруппы»

Вопросы для вывода: Периодическая система и периодическая таблица- это одинаковые понятия?

Учебный текст №3 «Периодический закон и периодическая система в свете учения о строении атома»

Формируемые понятия: физический смысл периодического закона, № периода, № группы

Вопросы для вывода: Почему наблюдается периодическая зависимость свойств элементов и образованных ими веществ от заряда ядра атома?

Учебный текст №4 « Значение периодического закона»

Формируемые понятия: материальность, единство и познаваемость мира, взаимосвязь явлений

Вопросы для вывода: Какие факты доказывают научность открытого Д.И.Менделеевым закона

    Этап закрепления (Ответы на вопросы и тестовые задания, содержащиеся в учебных текстах)

Диагностическая работа

1.Выберите схемы химических элементов:

1В. Второго периода 2В Третьего периода

а)2е,8е б)2е,8е,5е в) 1е г)2е,8е,8е,1е

2.Выберите схемы элементов:

1В Третьей группы 2В Шестой группы

а)2е, 8е,6е б)1s 2 2s 2 2p 6 3s 2 3p 1 в)1s 2 2s 1 г)1s 2 2s 2 2p 6

3.Наиболее ярко 1В металлические 2В неметаллические свойства выражены у: а)1s 2 2s 2 б)1s 2 2s 1 в) 1s 2 2s 2 2p 1 г) 1s 2 2s 2 2p 2

4.Причина 1В Усиления металлических свойств в периодах

2В Усиления металлических свойств в группах:

а) увеличение числа ЭУ б) увеличение числа электронов на ВЭУ в)увеличение заряда ядра г) увеличение массы атома

    Этап информирования учащихся о домашнем задании

    Выводы по уроку:

ПЗ существует и действует в природе реально и независимо от сознания человека. Человек лишь открывает закон, т. е. познаёт связь явлений и выражает её в формулировке: « свойства элементов и их соединений находятся в периодической зависимости от заряда ядра их атома»

Периодическая система- естественная классификация химических элементов. Периодическая таблица- графическое изображение периодического закона

Свойства элементов изменяются периодически, т.к. периодически изменяется число электронов на внешнем уровне их атомов

ПЗ- это не гипотеза, а научная теория, т.к. выполняет три основные функции: обобщающую, объясняющую и прогностическую

(ПСХЭ Д.И.Менделеева – единое целое, включающее в себя все химические элементы, т.к. у них общие черты строения атомов, общие свойства; ПЗ показывает взаимосвязь состава- строения- свойств; ПЗ позволяет предсказывать существование и свойства ещё неоткрытых элементов)

Схема – конспект

ПЗ Д.И.МЕНДЕЛЕЕВА

Пришёл! 1.Д.И.Менделеев сравнил между собой все химические элементы.

2.За основу сравнения взял атомные массы.

Увидел! Повторение сходных элементов металлов и неметаллов через равные промежутки.

Победил! 1. Классифицировал все химические элементы, создав периодическую систему.

2.Сформулировал периодический закон: «свойства элементов и их соединений находятся в периодической зависимости от заряда ядра их атома»

Блок 2 Как формула, как график трудовой

Строй менделеевской системы

Вокруг тебя творится мир

Входи в него, вдыхай, руками трогай!

С.Щипачёв

(Горизонтальные ряды)

Малые(1,2,3) 1- 2 элемента, 2,3- по 8элементов

Большие(4,5,6,7);. 4,5-по 18 элементов

6-32 элемента

7 незаконченный

Слева направо металлические свойства убывают, а неметаллические усиливаются.

Главная Побочная

(элементы и малых и больших периодов)

(элементы только больших периодов)

Сверху вниз металлические свойства усиливаются, а не- металлические ослабевают.

труктура

Блок 3 ПЗ и ПСХЭ в свете учения о строении атома

Физический смысл:

Порядковый № = заряду ядра атома(Z)

№ периода = числу ЭУ(энергетических уровней)

№ группы = числу электронов на ВЭУ(внешнем энергетическом уровне)

Период: Z, число электронов на ВЭУ увеличивается, число ЭУ =const

Радиус атома уменьшается, притяжение электронов к ядру растёт

Группа:Z, числоЭУ, радиус атома увеличиваются, число электронов на ВЭУ=const притяжение электронов к ядру уменьшается

Металличность- отдача электронов

Неметалличность- присоединение

Блок4 Значение ПЗ

ПЗ позволил: 1. Исправить атомные массы

2.Предсказать существование и свойства ещё неоткрытых элементов

ПЗ послужил толчком для развития атомной физики, геохимии, биохимии, химии космоса…

ПЗ подтвердил законы природы:

Единство и материальность мира

Познаваемость мира

Взаимосвязь явлений

«Мир сложен. Он полон событий, сомнений

И тайн бесконечных и смелых догадок.

Как чудо природы рождается гений

И в хаосе этом наводит порядок.»

Учебный текст 1 «Периодический закон Д.И.Менделеева»

Задание: дайте формулировку периодического закона, объясните понятие периодичность

    К середине 19века било открыто более 60 химических элементов, У большинства которых были изучены физические и химические свойства. Открытие новых элементов и изучение свойств элементов и их соединений позволили, с одной стороны, накопить богатый фактический материал, а с другой – выявили необходимость его систематизации

Ни одна из попыток классификации не выявила основной закономерности в их расположении и, следовательно, не могла привести к созданию естественной системы, охватывающей все элементы и отражающей природу их сходства и различия.

    За основу сравнения всех химических элементов Д.И.Менделеев взял фундаментальную количественную характеристику элемента- атомную массу.

Д.И.Менделеев расположил все известные элементы в порядке возрастания атомных масс:Li – Be – В – C – N – O – F – Ne – Na – Mg – Al – Si – P – S – Cl

И обнаружил, что в полученном им естественном ряду элементов сходные элементы(Li – Na - щелочные металлы; F- Cl – типичные неметаллы «галогены») повторяются через правильные интервалы. Эта закономерность была названа Д.И.Менделеевым законом периодичности и сформулирована следующим образом:

Свойства простых тел, а также форма и свойства соединений химических элементов находятся в периодической зависимости от величины атомных масс элементов.

    Д.И.Менделеев разбил естественный ряд на отрезки, которые начинались щелочным металлом, отрезки расположил друг под другом и получил систему химических элементов

Li – Be – В – C – N – O – F – Ne

Na – Mg – Al – Si – P – S – Cl

Это расположение отражало периодичность изменения свойств химических элементов.

Вопросы: 1) Какое свойство элемента Д.И.Менделеев положил в основу классификации?

2)Объясните выражение «свойства элементов изменяются периодически»? Какие свойства элементов изменяются периодически?

Учебный текст 2 « Периодическая система химических элементов Д.И. Менделеева»

Задание: Объясните выражение «периодическая система- естественная классификация химических элементов, а таблица- графическое изображение периодического закона»

1.В результате сопоставления свойств и атомных масс элементов Д.И. Менделеев пришёл к открытию ПЗ и на его основе- ПСХЭ, т.е. ПСХЭ реально существует в природе, является естественной классификацией химических элементов.

Таблица, которой мы пользуемся- это графическое изображение ПЗ. В настоящее время наиболее распространёнными формами таблицы являются короткая и длинная. Короткая форма таблицы была разработана Д.И. Менделеевым в 1870 году, её называют классической. (Первый вариант, предложенный в 1869 году, имел длинную форму

т. е. в ней периоды располагались одной строкой) В школе изучают короткую форму таблицы. Какова же её структура?

2. Периоды- горизонтальные ряды элементов, в пределах которых свойства элементов изменяются последовательно. Периоды делятся на малые (1период-2 элемента; 2,3 периоды- по 8 элементов) и большие

(4,5 периоды- по 18 элементов; 6 период- 32 элемента; 7 период- незаконченный)

Во всех периодах с увеличением порядкового номера элемента(СЛЕВА НАПРАВО) металлические свойства убывают, а неметаллические усиливаются.

3.Группы- это вертикальные столбцы элементов, их восемь.

Каждая группа состоит из 2-х подгрупп: главной и побочной.

Главная подгруппа включает элементы и малых и больших периодов.

Побочная подгруппа включает элементы только больших периодов.

Например:1группа главная подгруппа:H, Li, Na, K, Rb, Cs, Fr; побочная подгруппа- Cu, Ag, Au.

В подгруппу объединены элементы со сходными свойствами: сверху вниз металлические свойства элементов усиливаются, а неметаллические ослабевают. Пользуясь ПСХЭ можно дать сравнительную характеристику свойств любого элемента.

Тесты: 1. Элемент №20 находится: а)5п, 4 гр., гл. подгр. б) 4п, 5 гр., гл. подгр. в) 4п, 2гр., гл. подгр. 2п, 4 гр., гл. подгр.)

2.В 3 группе гл. подгруппе находится: а)Na б) Mg в)Al г) C

3Наиболее ярко металлические свойства выражены у: а)Na б) Mg в)Al

4Наиболее ярко металлические свойства выражены у: а) Li, б)Na, в)K

5Наиболее ярко неметаллические свойства выражены у: а)N б)O в)F

6Наиболее ярко неметаллические свойства выражены у: а) C б)Si в)Ge

Учебный текст3 «Периодический закон и периодическая система в свете учения о строении атома»

Задание: Дайте современную формулировку ПЗ. Почему заряд ядра (порядковый номер) является главной характеристикой элемента?

    После создания ПСХЭ перед учёными встал ряд вопросов. Сколько элементов должна содержать ПСХЭ? Почему свойства элементов изменяются периодически, ведь атомная масса изменяется непрерывно? Почему металлические свойства элементов с увеличением атомной массы в периоде ослабевают, а в группе усиливаются? Данные о строении атома позволили выяснить физический смысл ПЗ и ответить на многие вопросы. Сопоставление свойств элемента и строения его атома приводит к выводу: главной характеристикой элемента является его порядковый номер т.к. он равен заряду ядра атома. Заряд ядра определяет число электронов в атоме, которые определённым образом располагаются вокруг ядра, характер распределения электронов вокруг ядра определяет химические свойства атомов. Современная формулировка ПЗ:

Свойства элементов, а также их соединений находятся в периодической зависимости от заряда ядра атома.

    В пределах периода происходит постепенное накопление электронов в наружном слое от 1 до 8, поэтому происходит плавная смена металлических свойств элемента неметаллическими. Число ЭУ остаётся неизменным и совпадает с № периода.

    В пределах группы главной подгруппы число электронов на ВЭУ остаётся неизменным, равным № группы. Меняется же число ЭУ, следовательно, растёт радиус атома, притяжение электронов к ядру уменьшается, что объясняет рост сверху вниз металлических и снижение неметаллических свойств элементов.

    Свойства элементов периодически повторяются, т.к. с возрастанием заряда ядра атома периодически повторяется число электронов на ВЭУ атома элемента(физический смысл ПЗ). В большинстве случаев с возрастанием заряда ядра атомов элементов увеличиваются и их относительные атомные массы. Это обстоятельство и позволило Д.И.Менделееву открыть ПЗ задолго до открытия строения атома.

Тесты: 1Выберите название элемента, у которого на ВЭУ 8 электронов:

а) неон, б)фтор, в)бор, г)кислород

2.4ЭУ содержит электронная оболочка атома:

а)кремния, б) серебра, в) калия г)бериллия

3Электронная схема +Х) 2) 5 соответствует:

а)бору, б)серебру, в) хлору, г) азоту

4.Дополните формулу 1s 2 2s 2 …3s 1 , выберите название химического элемента, которому она принадлежит: а)алюминий, б)литий, в)натрий, г)азот

5. Дополните формулу +Х) 2)…) 3 , выберите название химического элемента, которому она принадлежит: : а)алюминий, б)литий, в)натрий, г)азот

Учебный текст 4. «Значение периодического закона»

Задание : оценивая значение открытия Д.И.Менделеева Ф.Энгельс писал: Менделеев совершил научный подвиг, который смело можно поставить рядом с открытием Леверье, вычислившего орбиту неизвестный планеты Нептуна. В чем научный подвиг Д.И.Менделеева?

1)Казалось всё просто: написать символы химических элементов, их атомные массы; расположить карточки в порядке возрастания атомных масс. НО, давайте представим середину 19 века. Что знали современники Д.И.Менделеева? 63 элемента. Некоторые из них не были хорошо очищены от примесей, а это вело к искажению атомных масс, свойств элементов. В таблице было много пустых клеток. Чтобы не нарушать периодичность, Д.И.Менделеев вынужден был исправлять атомные массы некоторых элементов(так масса бериллия считалась 13,5, металл бериллий попадал между двумя неметаллами углеродом и азотом. Менделеев исправляет массу бериллия на среднюю и ставит между литием и бором (7+11):2=9). Последующие исследования подтвердили это. А тогда это был смелый шаг. Кроме того ученый вынужден был допустить 3 перестановки: Элемент№18 аргон имеет массу 40, а элемент№19 калий – 39(№27 и №28; №52 и №53). Это было воспринято большинством ученых, как научное легкомыслие, необоснованная дерзость.

2)Д.И.Менделеев делает еще один смелый шаг: он подробно описывает свойство еще никому не известных элементов. Дальнейшее развитие экспериментальной химии убедительно подтвердило менделеевские прогнозы. Каково же было удивление и восхищение ученых разных стран, когда открыв новый элемент они обнаруживали точное совпадение его свойств с прогнозами Д.И.Менделеева. Периодическая система химических элементов сделалась компасом в исследованиях ученых. Опираясь на нее, они стали открывать новые химические элементы, создавать новые вещества с заранее предсказанными свойствами. С периодическим законом связан прогресс не только в науке(взаимопревращение элементов, поиск путей освобождения ядерной энергии, получения изотопов, развитие физики, геохимии, биохимии, химии космоса), но и в технике: ПЗ открывает закон распределения металлов в земной коре, помогая поиском полезных ископаемых. Металлурги нашли связь ПСХЭ с ролью и поведение элементов в специальных видах стали. Таким образом, границы действия закона обширны: они охватывают химические элементы Вселенной, и образуемые ими простые и сложные вещества. При жизни Д.И.Менделеева ПЗ опирался на атомно – молекулярное учение, сегодня- на электронную теорию строения атома, продолжая жить и развиваться.

Как вы понимаете выражение: «Закон, являясь инструментом познания, выполняет 3 функции: обобщающую, объясняющую, прогностическую.»?